Freshwater wetlands are natural sinks of carbon; yet, wetland conversion for agricultural uses can shift these carbon sinks into large sources of greenhouse gases. We know that the anthropogenic alteration of wetland hydrology and the broad use of N-fertilizers can modify biogeochemical cycling, however, the extent of their combined effect on greenhouse gases exchange still needs further research. Moreover, there has been recent interest in wetlands rehabilitation and preservation by improving natural water flow and by seeking alternative solutions to nutrient inputs. In a microcosm setting, we experimentally exposed soils to three inundation treatments (Inundated, Moist, Drained) and a nutrient treatment by adding high nitrogen load (300 kg ha) to simulate physical and chemical disturbances. After, we measured the depth microprofiles of NO and O concentration and CO and CH emission rates to determine how hydrological alteration and nitrogen input affect carbon and nitrogen cycling processes in inland wetland soils. Compared to the Control soils, N-fertilizer increased CO emissions by 40% in Drained conditions and increased CH emissions in Inundated soils over 90%. NO emissions from Moist and Inundated soils enriched with nitrogen increased by 17.4 and 18-fold, respectively. Overall, the combination of physical and chemical disturbances increased the Global Warming Potential (GWP) by 7.5-fold. The first response of hydrological rehabilitation, while typically valuable for CO emission reduction, amplified CH and NO emissions when combined with high nitrogen inputs. Therefore, this research highlights the importance of evaluating the potential interactive effects of various disturbances on biogeochemical processes when devising rehabilitation plans to rehabilitate degraded wetlands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2021.118637 | DOI Listing |
Nutrients
December 2024
Group of Investigation in Interactions Gene-Environment and Health (GIIGAS), Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain.
Background/objective: The relationship between food consumption and environmental sustainability is becoming increasingly evident. The aim of this study was to estimate the evolution of the environmental impact of food consumption in the Spanish population, assessed in terms of greenhouse gas (GHG) emissions.
Methods: Data collected from the Household Budget Survey were included, from approximately 24,000 households for the period of 2006-2023.
Int J Environ Res Public Health
November 2024
Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Considerable attention has recently been given to the contribution of the greenhouse gas (GHG) emissions of the healthcare sector to climate change. GHGs used in medical practice are regularly released into the atmosphere and contribute to elevations in global temperatures that produce detrimental effects on the environment and human health. Consequently, a comprehensive assessment of their global warming potential over 100 years (GWP) characteristics, and clinical uses, many of which have evaded scrutiny from policy makers due to their medical necessity, is needed.
View Article and Find Full Text PDFFoods
December 2024
Research Group on Biomass Energy, Department of Nuclear Energy, Federal University of Pernambuco, Recife 50740-545, PE, Brazil.
Food waste (FW) is a common source of contamination, contaminating both soils and water bodies by releasing greenhouse gases. FW holds great potential for biofuel and bioproduct production, which can mitigate its environmental impact and become a valuable addition to the circular bioeconomy. Therefore, this work aimed to investigate the use of food waste as a substrate to produce fermentable sugars and bioethanol.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Agricultural Biosystems Engineering Group, Department of Plant Sciences, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, the Netherlands.
Managing dairy excreta as slurry can result in significant emissions of ammonia (NH) and greenhouse gases (GHGs) during storage and thereafter. Additionally, slurry often has an imbalanced nitrogen (N) to phosphorus (P) ratio for crop fertilization. While various treatments exist to address emissions and nutrient imbalances, each has trade-offs that can result in pollution swapping.
View Article and Find Full Text PDFACS Sens
January 2025
College of Artificial Intelligence, Southwest University, Chongqing 400715, China.
Greenhouse gases (GHGs) have caused great harm to the ecological environment, so it is necessary to screen gas sensor materials for detecting GHGs. In this study, we propose an ideal gas sensor design strategy with high screening efficiency and low cost targeting four typical GHGs (CO, CH, NO, SF). This strategy introduces machine learning (ML) methods based on density functional theory (DFT) to achieve accurate and rapid screening from a large number of candidate gas sensor materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!