Glioblastoma (GBM) is the most common type of glioma and is uniformly fatal. Currently, tumour heterogeneity and mutation acquisition are major impedances for tailoring personalized therapy. We collected blood and tumour tissue samples from 25 GBM patients and 25 blood samples from healthy controls. Cell-free DNA (cfDNA) was extracted from the plasma of GBM patients and from healthy controls. Tumour DNA was extracted from fresh tumour samples. Extracted DNA was sequenced using a whole-genome sequencing procedure. We also collected 180 tumour DNA datasets from GBM patients publicly available at the TCGA/PANCANCER project. These data were analysed for mutations and gene-gene fusions that could be potential druggable targets. We found that plasma cfDNA concentrations in GBM patients were significantly elevated (22.6 ± 5 ng·mL ), as compared to healthy controls (1.4 ± 0.4 ng·mL ) of the same average age. We identified unique mutations in the cfDNA and tumour DNA of each GBM patient, including some of the most frequently mutated genes in GBM according to the COSMIC database (TP53, 18.75%; EGFR, 37.5%; NF1, 12.5%; LRP1B, 25%; IRS4, 25%). Using our gene-gene fusion database, ChiTaRS 5.0, we identified gene-gene fusions in cfDNA and tumour DNA, such as KDR-PDGFRA and NCDN-PDGFRA, which correspond to previously reported alterations of PDGFRA in GBM (44% of all samples). Interestingly, the PDGFRA protein fusions can be targeted by tyrosine kinase inhibitors such as imatinib, sunitinib, and sorafenib. Moreover, we identified BCR-ABL1 (in 8% of patients), COL1A1-PDGFB (8%), NIN-PDGFRB (8%), and FGFR1-BCR (4%) in cfDNA of patients, which can be targeted by analogues of imatinib. ROS1 fusions (CEP85L-ROS1 and GOPC-ROS1), identified in 8% of patient cfDNA, might be targeted by crizotinib, entrectinib, or larotrectinib. Thus, our study suggests that integrated analysis of cfDNA plasma concentration, gene mutations, and gene-gene fusions can serve as a diagnostic modality for distinguishing GBM patients who may benefit from targeted therapy. These results open new avenues for precision medicine in GBM, using noninvasive liquid biopsy diagnostics to assess personalized patient profiles. Moreover, repeated detection of druggable targets over the course of the disease may provide real-time information on the evolving molecular landscape of the tumour.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120899PMC
http://dx.doi.org/10.1002/1878-0261.13157DOI Listing

Publication Analysis

Top Keywords

gbm patients
20
gene-gene fusions
16
tumour dna
16
mutations gene-gene
12
healthy controls
12
gbm
10
gene mutations
8
cell-free dna
8
patients
8
tumour
8

Similar Publications

Peptide-based PET/CT imaging visualizes PD-L1-driven radioresistance in glioblastoma.

Drug Resist Updat

January 2025

Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. Electronic address:

Radioresistance remains a great challenge for radiotherapy in the treatment of glioblastoma (GBM). PD-L1 expression is a key contributor to radioresistance and immune escape in GBM. The lack of effective methods to monitor the change of PD-L1 during radiotherapy in patients limits timely intervention and management of the resistance.

View Article and Find Full Text PDF

Background: Within the realm of primary brain tumors, specifically glioblastoma (GBM), presents a notable obstacle due to their unfavorable prognosis and differing median survival rates contingent upon tumor grade and subtype. Despite a plethora of research connecting cardiotrophin-1 (CTF1) modifications to a range of illnesses, its correlation with glioma remains uncertain. This study investigated the clinical value of CTF1 in glioma and its potential as a biomarker of the disease.

View Article and Find Full Text PDF

Isocitrate dehydrogenase wild-type glioblastoma (GBM) is characterised by a heterogeneous genetic landscape resulting from dynamic competition between tumour subclones to survive selective pressures. Improvements in metabolite identification and metabolome coverage have led to increased interest in clinically relevant applications of metabolomics. Here, we use liquid chromatography-mass spectrometry and gene expression microarray to profile integrated intratumour metabolic heterogeneity, as a direct functional readout of adaptive responses of subclones to the tumour microenvironment.

View Article and Find Full Text PDF

Introduction: The choice between cemented and cementless fixation in primary elective total hip arthroplasty (THA) remains a subject of ongoing debate. However, comparisons between the two are subject to limited adjustments for patient characteristics, diagnoses, and surgical factors, as well as by limited outcome time endpoints. Our study aimed to compare the effect of femoral fixation on safety and implant survival outcomes in matched patients.

View Article and Find Full Text PDF

Introduction: Glioblastomas (GBM) are aggressive tumors that make up about 7% of central nervous system tumors in children. Spinal GBMs (sGBMs) are extremely rare, accounting for less than 1% of pediatric spinal tumors. sGBMs are difficult to treat due to their infiltrative nature and cause significant morbidity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!