Background And Aims: Phosphorus (P) availability is often limiting for rice (Oryza sativa) production. Improving internal P-use efficiency (PUE) is crucial to sustainable food production, particularly in low-input systems. A critical aspect of PUE in plants, and one that remains poorly understood, is the investment of leaf P in different chemical P fractions (nucleic acid-P, lipid-P, inorganic-P, metabolite-P and residual-P). The overarching objective of this study was to understand how these key P fractions influence PUE.

Methods: Three high-PUE and two low-PUE rice genotypes were grown in hydroponics with contrasting P supplies. We measured PUE, total P, P fractions, photosynthesis and biomass.

Key Results: Low investment in lipid-P was strongly associated with increased photosynthetic PUE (PPUE), achieved by reducing total leaf P concentration while maintaining rapid photosynthetic rates. All low-P plants exhibited a low investment in inorganic-P and lipid-P, but not nucleic acid-P. In addition, whole-plant PUE was strongly associated with reduced total P concentration, increased biomass and increased preferential allocation of resources to the youngest mature leaves.

Conclusions: Lipid remodelling has been shown in rice before, but we show for the first time that reduced lipid-P investment improves PUE in rice without reducing photosynthesis. This presents a novel pathway for increasing PUE by targeting varieties with reduced lipid-P investment. This will benefit rice production in low-P soils and in areas where fertilizer use is limited, improving global food security by reducing P fertilizer demands and food production costs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835646PMC
http://dx.doi.org/10.1093/aob/mcab138DOI Listing

Publication Analysis

Top Keywords

food production
8
nucleic acid-p
8
low investment
8
reduced lipid-p
8
lipid-p investment
8
pue
7
rice
6
investment
5
lipid-p
5
leaf phosphorus
4

Similar Publications

T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions.

View Article and Find Full Text PDF

The increasing demand for natural alternatives to synthetic fungicides has prompted research into natural products like essential oils for postharvest disease management. This study investigated the antifungal, antioxidant, cytotoxic, and genotoxic potential of essential oil mixtures derived from oregano, rosemary, and mint against Penicillium digitatum, the predominant fungal pathogen causing green mold in orange fruits. P.

View Article and Find Full Text PDF

The biopharmaceutical industry has witnessed significant growth in the development and approval of biosimilars. These biosimilars aim to provide cost-effective alternatives to expensive originator biosimilars, alleviating financial pressures within healthcare. The manufacturing of biosimilars is a highly complex process that involves several stages, each of which must meet strict regulatory standards to ensure that the final product is highly similar to the reference biologic.

View Article and Find Full Text PDF

Effect of anthocyanin rich black sugarcane on milk production and antioxidant capacity in lactating dairy cows.

Sci Rep

January 2025

School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.

This study aimed to explore the effect of anthocyanin-rich black sugarcane on milk production, plasma antioxidant capacity, and the storage period DPPH scavenging capacity of milk in lactating dairy cows. Sixteen lactating dairy cows were stratified and randomly assigned into two balanced dietary groups, namely Anthocyanin-rich black sugarcane (AS), and Napier grass (NG). The AS group demonstrated a significant decrease (p < 0.

View Article and Find Full Text PDF

Author Correction: Low-opportunity-cost feed can reduce land-use-related environmental impacts by about one-third in China.

Nat Food

January 2025

College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, State Key Laboratory of Nutrient Use and Management, China Agricultural University, Beijing, PR China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!