Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Studies of the hippocampus use smaller voxel sizes and smoothing kernels than cortical activation studies, typically using a multivoxel seed with specified radius for connectivity analysis. This study identified optimal processing parameters for evaluating hippocampal connectivity with sensorimotor cortex (SMC), comparing effectiveness by varying parameters during both activation and connectivity analysis. Using both 3mm and 4mm isovoxels, smoothing kernels of 0-10mm were evaluated on the amplitude and extent of motor activation and hippocampal connectivity with SMC. Psychophysiological interactions (PPI) identified hippocampal connectivity with SMC during volitional movements, and connectivity effects from multivoxel seeds were compared with alternate methods; a structural seed represented the mean connectivity map from all voxels within a region, whereas a functional seed represented the regional voxel with maximal SMC connectivity. With few exceptions, the same parameters were optimal for activation and connectivity. Larger isovoxels showed larger activation volumes in both SMC and the hippocampus; connectivity volumes from structural seeds were also larger, except from the posterior hippocampus. Regardless of voxel size, the 10mm smoothing kernel generated larger activation and connectivity volumes from structural seeds, as well as larger beta estimates at connectivity maxima; structural seeds also produced larger connectivity volumes than multivoxel seeds. Functional seeds showed lesser effects from voxel size and smoothing kernels. Optimal parameters revealed topography in structural seed connectivity along both the longitudinal axis and mediolateral axis of the hippocampus. These results indicate larger voxels and smoothing kernels can improve sensitivity for detecting both cortical activation and hippocampal connectivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651104 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260245 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!