A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distributed Optimization for Second-Order Discrete-Time Multiagent Systems With Set Constraints. | LitMetric

The optimization problem of second-order discrete-time multiagent systems with set constraints is studied in this article. In particular, the involved agents cooperatively search an optimal solution of a global objective function summed by multiple local ones within the intersection of multiple constrained sets. We also consider that each pair of local objective function and constrained set is exclusively accessible to the respective agent, and each agent just interacts with its local neighbors. By borrowing from the consensus idea, a projection-based distributed optimization algorithm resorting to an auxiliary dynamics is first proposed without interacting the gradient information of local objective functions. Next, by considering the local objective functions being strongly convex, selection criteria of step size and algorithm parameter are built such that the unique solution to the concerned optimization problem is obtained. Moreover, by fixing a unit step size, it is also shown that the optimization result can be relaxed to the case with just convex local objective functions given a properly chosen algorithm parameter. Finally, practical and numerical examples are taken to verify the proposed optimization results.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2021.3130173DOI Listing

Publication Analysis

Top Keywords

local objective
16
objective functions
12
distributed optimization
8
second-order discrete-time
8
discrete-time multiagent
8
multiagent systems
8
systems set
8
set constraints
8
optimization problem
8
objective function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!