Biomolecular motor proteins that generate forces by consuming chemical energy obtained from ATP hydrolysis play pivotal roles in organizing cytoskeletal structures in living cells. An ability to control cytoskeletal structures would benefit programmable protein patterning; however, our current knowledge is limited because of the underdevelopment of engineering approaches for controlling pattern formation. Here, we demonstrate the controlling of self-assembled patterns of microtubules (MTs) driven by kinesin motors by designing the boundary shape in fabricated microwells. By manipulating the collision angle of gliding MTs defined by the boundary shape, the self-assembly of MTs can be controlled to form protruding bundle and bridge patterns. Corroborated by the theory of self-propelled rods, we further show that the alignment of MTs determines the transition between the assembled patterns, providing a blueprint to reconstruct bridge structures in microchannels. Our findings introduce the tailoring of the self-organization of cytoskeletons and motor proteins for nanotechnological applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c03952 | DOI Listing |
Bio Protoc
December 2024
Graduate School of Life Sciences, Tohoku University, Miyagi, Japan.
The motile parameters of kinesin superfamily proteins are fundamental to intracellular transport. Single-molecule motility assays using total internal reflection fluorescence (TIRF) microscopy are a gold standard technique for measuring the motile parameters of kinesin motors. With this technique, one can evaluate the velocity, run length, and binding frequency of kinesins on microtubules by directly observing their motility.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
Ethnopharmacological Relevance: The Bu Shen Yi Sui capsule (BSYS), a modified version of the classical Chinese medicine formula Liu Wei Di Huang pill, has demonstrated therapeutic efficacy in the treatment of multiple sclerosis (MS). Nevertheless, the precise mechanism through which BSYS facilitates remyelination remains to be elucidated.
Aim Of The Study: This research investigates the role and potential mechanisms of BSYS-modified exosomes (exos) derived from bone marrow mesenchymal stem cells (BMSCs) in promoting remyelination in a cuprizone (CPZ)-induced demyelination model in mice.
Sci Rep
December 2024
Department of Chemical Engineering, Kyoto University, Nishi-kyoku, Kyoto, 615-8510, Japan.
The actomyosin cytoskeleton, a protein assembly comprising actin fibers and the myosin molecular motor, drives various cellular dynamics through contractile force generation at high densities. However, the relationship between the density dependence of the actomyosin cytoskeleton and force-controlled ordered structure remains poorly understood. In this study, we measured contraction-driven flow generation by varying the concentration of cell extracts containing the actomyosin cytoskeleton and associated nucleation factors.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, USA. Electronic address:
Endocytosis is a prominent mechanism for SARS-CoV-2 entry into host cells. Upon internalization into early endosomes (EEs), the virus is transported to late endosomes (LEs), where acidic conditions facilitate spike protein processing and viral genome release. Dynein and kinesin motors drive EE transport along microtubules; dynein moves EEs to the perinuclear region, while kinesins direct them towards the plasma membrane, creating a tug-of-war over the direction of transport.
View Article and Find Full Text PDFJ Proteomics
December 2024
School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Medicine, University of Otago, Christchurch 8014, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand. Electronic address:
Extreme heterogeneity exists in the hypersensitive stress response exhibited by the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. Because stress hypersensitivity can impact dystrophic phenotypes, this research aimed to understand the peripheral pathways driving this inter-individual variability. Male and female mdx mice were phenotypically stratified into "stress-resistant" or "stress-sensitive" groups based on their response to two laboratory stressors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!