SARS-CoV-2 is a new coronavirus that is the cause of COVID-19 pandemic. To enter the cell, the virus interacts via its surface S protein with angiotensin-converting enzyme 2 (ACE2), the main entry receptor on the cell membrane. Most of protective antibodies, including those induced by vaccinations, target the S protein, preventing its interaction with the ACE2 receptor. We have evaluated an alternative strategy for blocking the S-ACE2 interaction using new antipeptide antibodies to the N-terminus of the ACE2 molecule. These antibodies allow detection of human ACE2 in vitro and ex vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649309PMC
http://dx.doi.org/10.1134/S160767292201001XDOI Listing

Publication Analysis

Top Keywords

angiotensin-converting enzyme
8
enzyme ace2
8
ace2
5
antibodies
4
antibodies n-terminal
4
n-terminal domain
4
domain angiotensin-converting
4
ace2 block
4
block interaction
4
interaction sars-cov-2
4

Similar Publications

The COVID-19 outbreak, caused by the SARS-CoV-2 virus, was linked to significant neurological and psychiatric manifestations. This review examines the physiopathological mechanisms underlying these neuropsychiatric outcomes and discusses current management strategies. Primarily a respiratory disease, COVID-19 frequently leads to neurological issues, including cephalalgia and migraines, loss of sensory perception, cerebrovascular accidents, and neurological impairment such as encephalopathy.

View Article and Find Full Text PDF

Angiotensin-converting enzyme (ACE) is a key regulator of blood pressure, and ACE inhibition is an essential part of the treatment of hypertension. We used a molecular docking approach to find the interaction of ACE with an active flavonoid isolated from Linn, , which leads to potential antihypertensive effects in methyl predenisolone-induced hypertensive rats. Additionally, the pharmacokinetic parameters of this compound are assessed.

View Article and Find Full Text PDF

The persistence of qPCR positivity for SARS-CoV-2 in individuals who recovered from COVID-19 raised several questions regarding viral transmission, with a special interest in healthcare professionals who may pose a risk of transmitting SARS-CoV-2. This issue highlights the necessity for identifying the genetic risk factors associated with persistent SARS-CoV-2 infection. A promising target for achieving this goal is the angiotensin-converting enzyme 2 () gene, which has been associated with clinical characteristics of COVID-19 infection, such as severity.

View Article and Find Full Text PDF

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in hundreds of millions of infections and millions of deaths globally. Although vaccination campaigns are mitigating the pandemic, emerging viral variants continue to pose challenges. The spike (S) protein of SARS-CoV-2 plays a critical role in viral entry by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, making both proteins essential targets for therapeutic and vaccine development.

View Article and Find Full Text PDF

: ACE (angiotensin-converting enzyme) is considered a serological marker of sarcoidosis as elevated levels have been reported in 30-80% of patients. However, elevated ACE levels are also encountered in other medical conditions, and the clinical correlation between ACE levels and disease activity in sarcoidosis is disputable as well. To determine the significance of elevated ACE levels in the diagnosis and follow-up of sarcoidosis patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!