The structure of the commercially important polyvinylpyrrolidone-hydrogen peroxide complex can be understood by reference to the co-crystal structure of a hydrogen peroxide complex and its mixed hydrates of a two-monomer unit model compound, bisVP·2HO. The mixed hydrates involve selective water substitution into one of the two independent hydrogen peroxide binding sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cc06047c | DOI Listing |
Chem Commun (Camb)
December 2021
Durham University, Department of Chemistry, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.
The structure of the commercially important polyvinylpyrrolidone-hydrogen peroxide complex can be understood by reference to the co-crystal structure of a hydrogen peroxide complex and its mixed hydrates of a two-monomer unit model compound, bisVP·2HO. The mixed hydrates involve selective water substitution into one of the two independent hydrogen peroxide binding sites.
View Article and Find Full Text PDFPharmaceutics
September 2019
Research Center Pharmaceutical Engineering GmbH (RCPE), 8010 Graz, Austria.
Reactive impurities, such as hydrogen peroxide in excipients, raise a great concern over the chemical stability of pharmaceutical products. Traditional screening methods of spiking impurities into solid drug-excipient mixtures oversimplify the micro-environment and the physical state of such impurities in real dosage form. This can lead to an inaccurate prediction of the long-term product stability.
View Article and Find Full Text PDFBiomaterials
May 2016
Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran. Electronic address:
A major hindrance in islet transplantation as a feasible therapeutic approach for patients with type 1 diabetes is the insufficient oxygenation of the grafts, which results in cell death in portions of the implant. Here we address this limitation through the application of oxygen-generating microparticles (MP) and a fibrin-conjugated heparin/VEGF collagen scaffold to support cell survival by using a β cell line and pancreatic rat islets. MP are composed of a polyvinylpyrrolidone/hydrogen peroxide (PVP/H2O2) core and poly(D,L-lactide-co-glycolide) (PLGA) shell, along with immobilized catalase on the shell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!