Post-stroke seizure risk prediction models: a systematic review and meta-analysis.

Epileptic Disord

Ageing Clinical & Experimental Research (ACER) Team, Institute of Applied Health Sciences, University of Aberdeen, UK.

Published: April 2022

Objective: Stroke is the commonest cause of epileptic seizures in older adults. Risk factors for post-stroke seizure (PSS) are well known, however, predicting PSS risk is clinically challenging. This study aimed to evaluate the predictive accuracy of PSS risk prediction models developed to date.

Methods: We performed a systematic review and meta-analysis of studies using MEDLINE and EMBASE from database inception to 28 December 2020. The search criteria included all peer-reviewed research articles, in which PSS risk prediction models were developed or validated for ischaemic and/or haemorrhagic stroke. Random-effects meta-analysis was used to generate summary statistics of model performance and receiver operating characteristic curves. Quality appraisal of studies was conducted using PROBAST.

Results: Thirteen original studies involving 182,673 stroke patients (mean age: 38-74.9 years; 29.4-60.9% males), reporting 15 PSS risk prediction models were included. The incidence of early PSS (occurring ≤one week from stroke onset) and late PSS (occurring >one week from stroke onset) was 4.5% and 2.1%, respectively. Cortical involvement, functional deficits, increasing lesion size, early seizures, younger age, and haemorrhage were the commonest predictors across the models. SeLECT demonstrated greatest predictive accuracy (AUC 0.77 [95% CI: 0.71-0.82]) for late PSS following ischaemic stroke, and CAVE for predicting late PSS following haemorrhagic stroke (AUC 0.81 [0.76-0.86]). Fourteen of 15 studies demonstrated a high risk of bias, with lack of model validation and reporting of performance measures on calibration and discrimination being the commonest reasons.

Significance: Although risk factors for PSS are widely documented, this review identified few multivariate models with low risk of bias, synthetising single variables into an individual prediction of seizure risk. Such models may help personalise clinical management and serve as useful research tools by identifying stroke patients at high risk of developing PSS for recruitment into studies of anti-epileptic drug prophylaxis.

Download full-text PDF

Source
http://dx.doi.org/10.1684/epd.2021.1391DOI Listing

Publication Analysis

Top Keywords

risk prediction
16
prediction models
16
pss risk
16
late pss
12
risk
11
pss
11
post-stroke seizure
8
seizure risk
8
systematic review
8
review meta-analysis
8

Similar Publications

Objective: This study investigates the relationship between the albumin-to-creatinine ratio and diabetic retinopathy (DR) in US adults using NHANES data from 2009 to 2016. This study assesses the predictive efficacy of the urinary serum albumin-to-creatinine ratio (UACR/SACR Ratio) against traditional biomarkers such as the serum albumin-to-creatinine ratio (SACR) and urinary albumin-to-creatinine ratio (UACR) for evaluating DR risk. Additionally, the study explores the potential of these biomarkers, both individually and in combination with HbA1c, for early detection and risk stratification of DR.

View Article and Find Full Text PDF

Circadian Misalignment Impacts Cardiac Autonomic Modulation in Adolescence.

Sleep

January 2025

Sleep Research & Treatment Center, Department of Psychiatry & Behavioral Health, Penn State University, College of Medicine, Hershey PA, USA.

Study Objectives: Although heart rate variability (HRV), a marker of cardiac autonomic modulation (CAM), is known to predict cardiovascular morbidity, the circadian timing of sleep (CTS) is also involved in autonomic modulation. We examined whether circadian misalignment is associated with blunted HRV in adolescents as a function of entrainment to school or on-breaks.

Methods: We evaluated 360 subjects from the Penn State Child Cohort (median 16y) who had at least 3-night at-home actigraphy (ACT), in-lab 9-h polysomnography (PSG) and 24-h Holter-monitoring heart rate variability (HRV) data.

View Article and Find Full Text PDF

Introduction: Therapeutic drug monitoring (TDM) in inflammatory rheumatic diseases (RMDs) is gaining interest. However, there are unresolved questions about the best practices for implementing TDM effectively in clinical settings.

Objective: The primary objective of this study was to evaluate whether early TDM of adalimumab predicts drug survival at 52 weeks in patients with RMDs.

View Article and Find Full Text PDF

Objectives: To investigate the clinical and laboratory features of Sjögren's syndrome-associated autoimmune liver disease (SS-ALD) patients and identify potential risk and prognostic factors.

Methods: SS patients with or without ALD, who visited Tongji Hospital between the years 2011 and 2021 and met the 2012 American College of Rheumatology (ACR) classification criteria for Sjögren's syndrome, were retrospectively enrolled. The clinical and laboratory data of the enrolled patients, including autoimmune antibodies, were collected and analyzed with principal component analysis, correlation analysis, LASSO regression, and Cox regression.

View Article and Find Full Text PDF

Purpose: Carcinoembryonic antigen (CEA) is an important prognostic factor for rectal cancer. This study aims to introduce a novel cutoff point for CEA within the normal range to improve prognosis prediction and enhance patient stratification in rectal cancer patients.

Methods: A total of 316 patients with stages I to III rectal cancer who underwent surgical tumor resection were enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!