Femtosecond pump-probe spectroscopy reveals ultrafast carrier dynamics in mid-infrared (MIR) colloidal HgTe nanoparticles with a bandgap of 2.5 μm. We observe intraband relaxation processes after photoexcitation ranging from resonant excitation up to the multi-exciton generation (MEG) regime by identifying initially excited states from atomic effective pseudopotential calculations. Our study elucidates the earliest dynamics below 10 ps in this technologically relevant material. With increasing photon energy, we find carrier relaxation times as long as 2.1 ps in the MEG regime close to the ionization threshold of the particles. For all photon energies, we extract a constant mean carrier energy dissipation rate of 0.36 eV ps from which we infer negligible impact of the density of states on carrier cooling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1nr07007j | DOI Listing |
Anal Chem
January 2025
Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.
Detection of trace gases, such as radioactive carbon dioxide, clumped isotopes, and reactive radicals, is of great interest and poses significant challenges in various fields. Achieving both high selectivity and high sensitivity is essential in this context. We present a highly selective molecular spectroscopy method based on comb-locked, mid-infrared, cavity-enhanced, two-photon absorption.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne 1015 CH, Switzerland.
Interactions among microbes, minerals, and organic matter are key controls on carbon, nutrient, and contaminant dynamics in soils and sediments. However, probing these interactions at relevant scales and through time remains an analytical challenge due to both their complex nature and the need for tools permitting nondestructive and real-time analysis at sufficient spatial resolution. Here, we demonstrate the ability and provide analytical recommendations for the submicron-scale characterization of complex mineral-organic microstructures using optical photothermal infrared (O-PTIR) microscopy.
View Article and Find Full Text PDFNanophotonics
November 2024
National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China.
Non-local metasurface supporting geometric phases at bound states in the continuum (BIC) simultaneously enables sharp spectral resonances and spatial wavefront shaping, thus providing a diversified optical platform for multifunctional devices. However, a static nonlocal metasurface cannot manipulate multiple degrees of freedom (DOFs), making it difficult to achieve multifunctional integration and be applied in different scenarios. Here, we presented and demonstrated phase-change non-local metasurfaces that can realize dynamic manipulation of multiple DOFs including resonant frequency, values, band, and spatial wavefront.
View Article and Find Full Text PDFNanophotonics
August 2024
Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA.
Nanophotonic structures have shown promising routes to controlling and enhancing nonlinear optical processes at the nanoscale. However, most nonlinear nanostructures require a handling substrate, reducing their application scope. Due to the underwhelming heat dissipation, it has been a challenge to evaluate the nonlinear optical properties of free-standing nanostructures.
View Article and Find Full Text PDFACS Phys Chem Au
November 2024
Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States.
Herein, we report on the ultrafast photodissociation of nickel tetracarbonyl-a prototypical metal-ligand model system-at 197 nm. Using mid-infrared transient absorption spectroscopy to probe the bound C≡O stretching modes, we find evidence for the picosecond time scale production of highly vibronically excited nickel dicarbonyl and nickel monocarbonyl, in marked contrast with a prior investigation at 193 nm. Further spectral evolution with a 50 ps time constant suggests an additional dissociation step; the absence of any corresponding growth in signal strongly indicates the production of bare Ni, a heretofore unreported product from single-photon excitation of nickel tetracarbonyl.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!