Commercially available fully spectroscopic pixelated cadmium telluride (CdTe) detector systems have been adopted lately for benchtop x-ray fluorescence (XRF) imaging/computed tomography (XFCT) of objects containing metal nanoprobes such as gold nanoparticles (GNPs). To date, however, some important characteristics of such detector systems under typical operating conditions of benchtop XRF/XFCT imaging systems are not well known. One important but poorly studied characteristic is the effect of detector bias-voltage on photon counting efficiency, energy resolution, and the resulting material detection limit. In this work, therefore, we investigated these characteristics for a commercial pixelated detector system adopting a 1-mm-thick CdTe sensor (0.25-mm pixel-pitch), known as HEXITEC, incorporated into an experimental benchtop cone-beam XFCT system with parallel-hole detector collimation. The detector system, operated at different bias-voltages, was used to acquire the gold XRF/Compton spectra from 1.0 wt% GNP-loaded phantom irradiated with 125 kVp x-rays filtered by 1.8-mm Tin. At each bias-voltage, the gold XRF signal, and the full-width-at-half-maximum at gold KXRF peak (∼67 keV) provided photon counting efficiency and energy resolution, respectively. Under the current experimental conditions, the detector photon counting efficiency and energy resolution improved with increasing bias-voltage by ∼41 and ∼29% at -300V; ∼54 and ∼35% at -500V, respectively, when compared to those at -100V. Consequently, the GNP detection limit improved by ∼26% at -300V and ∼30% at -500V. Furthermore, the homogeneity of per-pixel energy resolution within the collimated detector area improved by ∼34% at -300V and ∼54% at -500V. These results suggested the gradual improvements in the detector performance with increasing bias-voltage up to -500V. However, at and beyond -550V, there were no discernible improvements in photon counting efficiency and energy resolution. Thus, the bias-voltage range of -500 to -550V was found optimal under the current experimental conditions that are considered typical of benchtop XRF/XFCT imaging tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675630PMC
http://dx.doi.org/10.1088/2057-1976/ac3d9cDOI Listing

Publication Analysis

Top Keywords

energy resolution
20
photon counting
16
counting efficiency
16
efficiency energy
16
detector system
12
detector
10
fully spectroscopic
8
spectroscopic pixelated
8
pixelated cadmium
8
cadmium telluride
8

Similar Publications

Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film.

Nat Mater

January 2025

Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.

Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.

View Article and Find Full Text PDF

Zonal Characteristics of Collagen Ultrastructure and Responses to Mechanical Loading in Articular Cartilage.

Acta Biomater

January 2025

Biomedical Engineering, College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK. Electronic address:

The biomechanical properties of articular cartilage arise from a complex bioenvironment comprising hierarchically organised collagen networks within the extracellular matrix (ECM) that interact with the proteoglycan-rich interstitial fluid. This network features a depth-dependent fibril organisation across different zones. Understanding how collagen fibrils respond to external loading is key to elucidating the mechanisms behind lesion and managing degenerative conditions like osteoarthritis.

View Article and Find Full Text PDF

Prediction of hip fracture by high-resolution peripheral quantitative computed tomography in older Swedish women.

J Bone Miner Res

January 2025

Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.

The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.

View Article and Find Full Text PDF

Attosecond Rescattering of Laser-Assisted Electron-Proton Collision in Coulomb Potential.

J Phys Chem A

January 2025

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.

This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.

View Article and Find Full Text PDF

Super-Resolved Mapping of Electrochemical Reactivity in Single 3D Catalysts.

Nano Lett

January 2025

Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China.

Crystals with three-dimensional (3D) stereoscopic structures, characterized by diverse shapes, crystallographic planes, and morphologies, represent a significant advancement in catalysis. Differentiating and quantifying the catalytic activity of specific surface facets and sites at the single-particle level is essential for understanding and predicting catalytic performance. This study employs super-resolution radial fluctuations electrogenerated chemiluminescence microscopy (SRRF-ECLM) to achieve high-resolution mapping of electrocatalytic activity on individual 3D CuO crystals, including cubic, octahedral, and truncated octahedral structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!