A batch experiment was used in studying the effect of acrylic-acid-modified walnut shell (MWNS) as a low-cost adsorbent for removing Rhodamine B (RB) cationic dye in aqueous solutions. The adsorbent dosage, initial dye concentration, contact time, temperature, pH, and supporting electrolyte concentration on the adsorption behaviour of the adsorbent were explored. The adsorbent was characterized using the point of zero charge (pH), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), automatic specific surface analysis (BET), and X-ray photoelectron spectroscopy (XPS). Results showed that MWNS had abundant active groups and rough surface, which is conducive to the adsorption process. The kinetics and equilibrium data of MWNS-to-RB adsorption were in accordance pseudo-second-order kinetic and Freundlich isotherm models, respectively. Under optimal adsorption conditions, the maximum adsorption capacity of RB was 48.87 mg·g. Thermodynamic results showed spontaneously and exothermically the adsorption process. Moreover, the addition of electrolyte had a negative effect on equilibrium adsorption capacity and adsorption rate.HIGHLIGHTS Acrylic-acid-modified walnut shells was used as an adsorbent for the removal of Rhodamine B (RB).The adsorption of RB by modified walnut shells was greatly affected by pH.Pseudo-second-order kinetic and Freundlich model fit the experimental data.The modified walnut shell can remove RB through electrostatic attraction, hydrogen bonding, and electron donor-acceptor interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2021.2011430DOI Listing

Publication Analysis

Top Keywords

acrylic-acid-modified walnut
12
walnut shells
12
adsorption
10
walnut shell
8
adsorption process
8
kinetic freundlich
8
adsorption capacity
8
modified walnut
8
walnut
5
adsorbent
5

Similar Publications

A batch experiment was used in studying the effect of acrylic-acid-modified walnut shell (MWNS) as a low-cost adsorbent for removing Rhodamine B (RB) cationic dye in aqueous solutions. The adsorbent dosage, initial dye concentration, contact time, temperature, pH, and supporting electrolyte concentration on the adsorption behaviour of the adsorbent were explored. The adsorbent was characterized using the point of zero charge (pH), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), automatic specific surface analysis (BET), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!