A batch experiment was used in studying the effect of acrylic-acid-modified walnut shell (MWNS) as a low-cost adsorbent for removing Rhodamine B (RB) cationic dye in aqueous solutions. The adsorbent dosage, initial dye concentration, contact time, temperature, pH, and supporting electrolyte concentration on the adsorption behaviour of the adsorbent were explored. The adsorbent was characterized using the point of zero charge (pH), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), automatic specific surface analysis (BET), and X-ray photoelectron spectroscopy (XPS). Results showed that MWNS had abundant active groups and rough surface, which is conducive to the adsorption process. The kinetics and equilibrium data of MWNS-to-RB adsorption were in accordance pseudo-second-order kinetic and Freundlich isotherm models, respectively. Under optimal adsorption conditions, the maximum adsorption capacity of RB was 48.87 mg·g. Thermodynamic results showed spontaneously and exothermically the adsorption process. Moreover, the addition of electrolyte had a negative effect on equilibrium adsorption capacity and adsorption rate.HIGHLIGHTS Acrylic-acid-modified walnut shells was used as an adsorbent for the removal of Rhodamine B (RB).The adsorption of RB by modified walnut shells was greatly affected by pH.Pseudo-second-order kinetic and Freundlich model fit the experimental data.The modified walnut shell can remove RB through electrostatic attraction, hydrogen bonding, and electron donor-acceptor interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2021.2011430 | DOI Listing |
Environ Technol
May 2023
School of Chemistry and Environmental Engineering, Yangtze University, Hubei, People's Republic of China.
A batch experiment was used in studying the effect of acrylic-acid-modified walnut shell (MWNS) as a low-cost adsorbent for removing Rhodamine B (RB) cationic dye in aqueous solutions. The adsorbent dosage, initial dye concentration, contact time, temperature, pH, and supporting electrolyte concentration on the adsorption behaviour of the adsorbent were explored. The adsorbent was characterized using the point of zero charge (pH), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), automatic specific surface analysis (BET), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!