Neurospheres (NS) derived from adult stem cells of non-neural tissues represent a promising source of neural stem cells (NSCs) and neural progenitor cells (NPCs) for autologous cell therapy. Knowing the fine structure of NS cells is essential for characterizing them during differentiation or oncogenic transformation. NS are generated by culturing ovarian cortical cells (OCCs) under specific conditions. To establish whether these OCCs exhibited a similar morphophenotype as those from the central nervous system (CNS) reported in the literature, sheep OCCs were cultured for 21 days to generate NS. Expression levels of pluripotency (Nanog, octamer-binding transcription factor 4 [Oct4], and SRY-box transcription factor 2 [Sox2]) and NSCs/NPCs (nestin, paired box 6 [Pax6], and p75 neurotrophin receptor [P75NTR]) transcripts were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), the NSC/NPC antigens were immunolocalized, and structural and ultrastructural analyses were performed in OCC-NS on Days 10, 15, and 21 in culture. Spheroids expressed transcripts and antigens of pluripotency as well as NSCs/NPCs. Cells were arranged into an inner core, with frequent apoptotic and degenerative events, and a peripheral epithelial-like cover with abundant cytoplasmic organelles, apical microvilli, and filament bundles of cytoskeleton elements. Adherens junctions and apical tight and lateral loose interdigitations were found in peripheral cells that eventually lost apical-basal polarization, which might indicate their disengaging/aggregating from/to the NS. We can conclude that OCC-NS shares the most structural and ultrastructural characteristics with CNS-NS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.24850DOI Listing

Publication Analysis

Top Keywords

ovarian cortical
8
cells
8
cortical cells
8
stem cells
8
transcription factor
8
structural ultrastructural
8
morphological ultrastructural
4
ultrastructural characterization
4
characterization neurospheres
4
neurospheres spontaneously
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.

Background: Estrogens, such as 17β-estradiol, are the primary female sex hormones predominantly synthesized by mature ovarian follicular cells. The natural exhaustion of ovarian follicular cells during menopause causes a rapid decline in endogenous estrogen levels. This decline in estrogen levels is associated with an increase in chronic, age-related pathologies, including inflammation in the brain.

View Article and Find Full Text PDF

Spatiotemporal dynamics of early oogenesis in pigs.

Genome Biol

January 2025

College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.

Background: In humans and other mammals, the process of oogenesis initiates asynchronously in specific ovarian regions, leading to the localization of dormant and growing follicles in the cortex and medulla, respectively; however, the current understanding of this process remains insufficient.

Results: Here, we integrate single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to comprehend spatial-temporal gene expression profiles and explore the spatial organization of ovarian microenvironments during early oogenesis in pigs. Projection of the germ cell clusters at different stages of oogenesis into the spatial atlas unveils a "cortical to medullary (C-M)" distribution of germ cells in the developing porcine ovaries.

View Article and Find Full Text PDF

Gene expression analysis of ovarian follicles and stromal cells in girls with Turner syndrome.

Mol Hum Reprod

December 2024

Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.

In patients with mosaic Turner syndrome, the ovarian somatic cells (granulosa and stromal cells) display a high level of aneuploidy with a 45,X karyotype, which may affect gene expression in the ovary and contribute to their reduced fertility. The aim of the current research is to study the effect of aneuploidy of somatic ovarian cells on gene expression in ovarian cortex stromal cells and small ovarian follicles from mosaic (45,X/46,XX) Turner syndrome patients. To this end, ovarian cortical tissue was obtained by laparoscopic surgery from eight mosaic Turner syndrome patients (aged 5-19 years) and eight controls (aged 6-18 years).

View Article and Find Full Text PDF
Article Synopsis
  • * The study characterized over 5700 proteins in coho salmon ovaries, revealing significant changes during the transition from primary to secondary ovarian follicle development, which is vital for egg quality and embryonic development.
  • * Key findings indicate that metabolic processes and protein functions involved in follicle growth and cell signaling change dramatically during this transition, laying groundwork for identifying biomarkers for salmon egg quality.
View Article and Find Full Text PDF

[Clinicopathological significance of SOX2 and FOXG1 expression patterns in ovarian immature teratomas].

Zhonghua Bing Li Xue Za Zhi

December 2024

Department of Pathology, Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China.

To investigate the relationship between the expression patterns of SOX2 and FOXG1 and the differentiation/development level of neural components in immature teratoma and to determine the clinical significance and potential application of this correlation in a clinical setting. We conducted a comprehensive whole transcriptome sequencing analysis to identify differentially expressed genes (DEGs) across various subtypes of ovarian germ cell tumors. Additionally, immunohistochemical staining of paraffin-embedded tissue sections was employed to assess the nuclear staining pattern of SOX2 and FOXG1 proteins within the tumor tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!