Obesity is a chronic disease that affects various physiological systems. Among them, the gastrointestinal tract appears to be a main target of this disease. High-fat diet (HFD) animal models can help recapitulate the classic signs of obesity and present a series of gastrointestinal alterations, mainly dysmotility. Because intestinal motility is governed by the enteric nervous system (ENS), enteric neurons, and glial cells have been studied in HFD models. Given the importance of the ENS in general gut physiology, this review aims to discuss the relationship between HFD-induced neuroplasticity and gut dysmotility observed in experimental models. Furthermore, we highlight components of the gut environment that might influence enteric neuroplasticity, including gut microbiota, enteric glio-epithelial unit, serotonin release, immune cells, and disturbances such as inflammation and oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/obr.13404 | DOI Listing |
BJUI Compass
December 2024
Department of Urology and Pediatric Urology Nantes Université, Centre Hospitalo-Universitaire de Nantes Nantes France.
Objectives: To show that robot-assisted laparoscopic cutaneous continent urinary diversion (RALCCUD) is feasible and safe; however, data on clinical outcomes in adults are lacking.
Materials And Methods: We conducted a retrospective study of all adults who underwent RALCCUD between 2017 and 2022 at a single tertiary reference centre.Patient characteristics, clinical information and perioperative outcomes were recorded.
Gastroenterology
December 2024
Department of Clinical Genetics, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands. Electronic address:
Background And Aims: The enteric nervous system (ENS), comprised of neurons and glia, regulates intestinal motility. Hirschsprung disease (HSCR) results from defects in ENS formation, yet while neuronal aspects have been extensively studied, enteric glia remain disregarded. This study aimed to explore enteric glia diversity in health and disease.
View Article and Find Full Text PDFCancer Lett
December 2024
Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China. Electronic address:
A malignant tumor is a complex systemic disease involving the nervous system, which regulates nerve signals. Cancer neuroscience is a field that explores the interactions between tumors and the nervous system. The gastrointestinal tract is a typical peripheral organ with abundant neuroregulation and is regulated by the peripheral, enteric, and central nervous systems (PNS, ENS, and CNS, respectively).
View Article and Find Full Text PDFBrain
December 2024
School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
Convergent data, across species, paint a compelling picture of the critical role of the gut and its resident microbiota in several brain functions and disorders. The chemicals mediating communication along these sophisticated highways of the brain-gut-microbiome (BGM) axis include both microbiota metabolites and classical neurotransmitters. Amongst the latter, GABA is fundamental to brain function where it mediates the majority of neuronal inhibition.
View Article and Find Full Text PDFMucosal Immunol
December 2024
Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK. Electronic address:
Neuro-immune interactions within barrier organs, such as lung, gut, and skin, are crucial in regulating tissue homeostasis, inflammatory responses, and host defence. Our rapidly advancing understanding of peripheral neuroimmunology is transforming the field of barrier tissue immunology, offering a fresh perspective for developing therapies for complex chronic inflammatory disorders affecting barrier organs. However, most studies have primarily examined interactions between the peripheral nervous system and the immune system from a neuron-focused perspective, while glial cells, the nonneuronal cells of the nervous system, have received less attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!