To assist in the clinical management of patients and to support infection control, we tested the use of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) point-of-care antigen test (AgPOC) for unplanned hospitalization, coupled with a nucleic acid amplification test (NAAT) using specimens collected at the same time upon arrival. The aim of this study was to assess the performance of the AgPOC in this specific use compared to NAAT for SARS-CoV-2 diagnosis, in the context of the low prevalence of infection. For 5 months (between two peaks in France of the SARS-CoV-2 pandemic), all patients admitted who undertook the AgPOC/NAAT paired tests were included in the study. AgPOC performances were determined considering the clinical status and the delay of symptoms onset. NAAT and AgPOC results were available for 4425 subjects. AgPOC results showed a homogeneous specificity (>97%) but a low sensitivity at 45.8%. Considering the national guidelines, sensitivity dropped to 32.5% in cases of symptomatic patients with symptoms older than 5 days or more. This study shows the poor performance of AgPOC for entry screening of patients in hospitals. AgPOC may represent a useful tool in the hospital setting only if the use is restricted to patients with consistent symptoms less than 4 days old.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9015581 | PMC |
http://dx.doi.org/10.1002/jmv.27505 | DOI Listing |
BMJ Open Qual
January 2025
Rectorate, University of Health Sciences, Phnom Penh, Cambodia.
Rapid antigen diagnostic tests (Ag-RDTs) that quickly and accurately identify SARS-CoV-2 are an essential part of the COVID-19 response, but multiple factors can affect the validity of Ag-RDTs results. In Cambodia, several commercial Ag-RDTs have become available since the COVID-19 outbreak, but quality control (QC) and external quality assurance (EQA) of these rapid tests have yet to be fully and systematically implemented. We collaborated with laboratory experts in Australia and piloted an EQA programme of the commonly used COVID-19 Ag-RDTs at the University of Health Sciences' MERIEUX Laboratory (Tier 1 site-responsible for the in-country receipt and distribution of QA material) and four other participating laboratories (Tier 2-healthcare facility based) between November 2021 and November 2022.
View Article and Find Full Text PDFSci Rep
January 2025
Center of Excellence for Antimicrobial Resistance and Stewardship, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
The pathogenic oomycete Pythium insidiosum causes a fatal infectious illness known as pythiosis, impacting humans and certain animals in numerous countries in the tropics and subtropics. Delayed diagnosis is a primary factor contributing to the heightened morbidity and mortality associated with the disease. Several new serodiagnostic methods have been developed to improve the identification of pythiosis.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom. Electronic address:
Early detection of hepatitis C virus (HCV) infection is crucial for eliminating this silent killer, especially in resource-limited settings. HCV core antigen (HCVcAg) represents a promising alternative to the current "gold standard" HCV RNA assays as an active viremia biomarker. Herein, a highly sensitive electrochemical magneto-immunosensor for the HCVcAg was developed.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Veterinary Parasitology, U. P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India.
This study is the first to conduct a sero-surveillance of Bovine Tropical Theileriosis (BTT) caused by the protozoan parasite Theileria annulata (T. annulata) using a recombinant Tams1 protein-based dot-ELISA in cattle, and to compare its efficacy with plate-ELISA, single PCR, nested PCR, and blood microscopy. The goal was to identify the most effective method for the early and accurate detection of theileriosis, which significantly impacts livestock through reduced milk yield and increased mortality.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Transformative Health Systems Research to Improve Veteran Equity and Independence Center of Innovation, Veterans Affairs Providence Health Care System, Providence, Rhode Island.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!