We present an SI epidemic model whereby a continuous structuring variable captures variability in proliferative potential and resistance to infection among susceptible individuals. The occurrence of heritable, spontaneous changes in these phenotypic characteristics and the presence of a fitness trade-off between resistance to infection and proliferative potential are explicitly incorporated into the model. The model comprises an ordinary differential equation for the number of infected individuals that is coupled with a partial integrodifferential equation for the population density function of susceptible individuals through an integral term. The expression for the basic reproduction number [Formula: see text] is derived, the disease-free equilibrium and endemic equilibrium of the model are characterised and a threshold theorem involving [Formula: see text] is proved. Analytical results are integrated with the results of numerical simulations of a calibrated version of the model based on the results of artificial selection experiments in a host-parasite system. The results of our mathematical study disentangle the impact of different evolutionary parameters on the spread of infectious diseases and the consequent phenotypic adaption of susceptible individuals. In particular, these results provide a theoretical basis for the observation that infectious diseases exerting stronger selective pressures on susceptible individuals and being characterised by higher infection rates are more likely to spread. Moreover, our results indicate that heritable, spontaneous phenotypic changes in proliferative potential and resistance to infection can either promote or prevent the spread of infectious diseases depending on the strength of selection acting on susceptible individuals prior to infection. Finally, we demonstrate that, when an endemic equilibrium is established, higher levels of resistance to infection and lower degrees of phenotypic heterogeneity among susceptible individuals are to be expected in the presence of infections which are characterised by lower rates of death and exert stronger selective pressures.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00285-021-01703-1DOI Listing

Publication Analysis

Top Keywords

susceptible individuals
24
resistance infection
16
proliferative potential
12
infectious diseases
12
epidemic model
8
potential resistance
8
heritable spontaneous
8
[formula text]
8
endemic equilibrium
8
spread infectious
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!