A novel electrochemical sensor has been fabricated for sensitive determination of zearalenone (ZEA) in food samples based on molybdenum disulfide quantum dots (MoS QDs) and two-dimensional titanium carbide (2D-TiCT MXene) co-modified multi-walled carbon nanotube (MWCNT) heterostructure. Physical and electrochemical characterizations reveal that 2D-TiCT and MoS QDs co-modified MWCNTs yields synergistic signal amplification effect, together with large specific surface area and excellent conductivity for the heterostructure, endowing the developed sensor with high detection performance to ZEA. Under optimized conditions, the sensor shows a wide linear range from 3.00 to 300 ng mL and a low limit of detection (LOD) of 0.32 ng mL which is far lower than the maximum residue limits (MRLs) settled by the European Commission. In addition, it exhibits excellent selectivity, high reproducibility with a relative standard deviation (RSD) of 1.1%, and good repeatability (RSD 1.1%). In real sample analysis recoveries ranged from 94.8 to 105% showing the proposed electrochemical sensor has high potential in practical applications. This work presents an effective and valuable pathway for the use of novel heterostructure in the biosensing field.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-021-05104-5DOI Listing

Publication Analysis

Top Keywords

quantum dots
8
titanium carbide
8
carbon nanotube
8
electrochemical sensor
8
mos qds
8
sensor high
8
rsd 11%
8
mos quantum
4
dots titanium
4
carbide co-modified
4

Similar Publications

Carbon dot embedded hybrid microgel from synthesis to sensing: Experimental and theoretical approach.

Anal Chim Acta

February 2025

Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Simhat, Haringhata, West Bengal, 741249, India. Electronic address:

Background: The intellectual progress in fabricating artificial probes for selective appraisal of biologically admissible amino acids has displayed exponential growth in recent era.The neoteric era in material science has witnessed the significant application of carbon quantum dots (CQDs). However, the hybrid microgel of CQDs was less explored.

View Article and Find Full Text PDF

A label-free electrochemical biosensor based on graphene quantum dots-nanoporous gold nanocomposite for highly sensitive detection of glioma cell.

Anal Chim Acta

February 2025

School of Life Sciences, The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China. Electronic address:

Background: Glioma accounts for 80 % of all malignant primary brain tumors with a high mortality rate. Histopathological examination is the current diagnostic methods for glioma, but its invasive surgical interventions can cause cerebral edema or impair neural functioning. Liquid biopsy proves to be an efficient method for glioma detection.

View Article and Find Full Text PDF

Visible light-responsive enrofloxacin PEC aptasensor based on CN QDs sensitized BiOBr nanosheets.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:

Background: The excessive application of enrofloxacin (ENR) results in residues contaminating both food and the environment. Consequently, developing robust analytical methods for the selective detection of ENR is crucial. The photoelectrochemical (PEC) sensor has emerged as a highly sensitive analytical technique that has seen rapid development in recent years.

View Article and Find Full Text PDF

Aliphatic substrates-mediated unique rapid room temperature synthesis of carbon quantum dots for fenofibrate versatile analysis.

Anal Chim Acta

February 2025

Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt. Electronic address:

Background: The current synthetic strategies for carbon dots (CDs) are usually time-consuming, rely on complicated processes, and need high temperatures and energy. Recent studies have successfully synthesized CDs at room temperature. Unfortunately, most CDs synthesized at room temperature are obtained under harsh reaction conditions, prepared using aromatic precursors, or need a long time to generate.

View Article and Find Full Text PDF

Preparation of a biodegradable packaging film by konjac glucomannan/sodium alginate reinforced with nitrogen-doped carbon quantum dots from crayfish shell for crayfish meat preservation.

Int J Biol Macromol

January 2025

Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China; Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China. Electronic address:

The development of biomass material is an important approach to alleviating the excessive using of plastic packaging, by which the product could be more environmentally friendly and lower toxicity. In this study, we developed a biodegradable photodynamic antibacterial food packaging film using nitrogen-doped carbon quantum dots (N-CQDs) synthesized from crayfish shells, combined with konjac glucomannan (KGM) and sodium alginate (SA). Casting method was used to prepare the composite film and results indicated that incorporation of N-CQDs significantly enhanced the mechanical and barrier properties of the film by reducing the number of micropores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!