Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionm5kv4kan8grmj7l9veublgsqkkcp4a7n): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pattern mining from graph transactional data (GTD) is an active area of research with applications in the domains of bioinformatics, chemical informatics and social networks. Existing works address the problem of mining frequent subgraphs from GTD. However, the knowledge concerning the coverage aspect of a set of subgraphs is also valuable for improving the performance of several applications. In this regard, we introduce the notion of subgraph coverage patterns (). Given a GTD, a subgraph coverage pattern is a set of subgraphs subject to relative frequency, coverage and overlap constraints provided by the user. We propose the ubgraph D-based lat ransactional () framework for the efficient extraction of from a given GTD. Our performance evaluation using three real datasets demonstrates that our proposed framework is indeed capable of efficiently extracting from GTD. Furthermore, we demonstrate the effectiveness of through a case study in computer-aided drug design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636072 | PMC |
http://dx.doi.org/10.1007/s41060-021-00292-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!