Epithelial ovarian cancer, widely suggested as endocrine-related cancer, yields a low survival rate among patients. Despite intensive research for nearly a century, there have been no fundamental advances in treatment. The reductive 17β-HSD7 is a special enzyme possessing a remarkable dual activity in both the biosynthesis of the most potent estrogen estradiol and the inactivation of the most active androgen dihydrotestosterone. In the present study, we observed over-expression of 17β-HSD7 in EOC cells such as OVCAR-3 and SKOV-3, in agreement with integrative data analysis demonstrating overexpression of 17β-HSD7 in EOC tissues. After knocking down 17β-HSD7, SKOV-3 cell proliferation decreased by 29%, cell arrest in the G2/M phase increased by 25% with cyclin B1/Cdk1 inhibition. Inhibition of 17β-HSD7 in EOC cells triggered negative feedback of its expression, which further decreased the estradiol level to more than 60% under the experimental condition. Such inhibition increased the dihydrotestosterone level to many times higher and suppressed cell proliferation. Thus, 17β-HSD7 is demonstrated to be a promising target for the endeavor against the malignant ovarian cancer, a menace in human life. The targeting of such an enzyme thus provides exceptional scientific importance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640825PMC

Publication Analysis

Top Keywords

ovarian cancer
12
cell proliferation
12
17β-hsd7 eoc
12
eoc cells
8
17β-hsd7
7
cancer
5
unprecedented endocrine
4
endocrine target
4
target ovarian
4
cancer inhibiting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!