The emergence of infections by carbapenem resistant Enterobacteriaceae (CRE) pathogens has created an urgent public health threat, as carbapenems are among the drugs of last resort for infections caused by a growing fraction of multi-drug resistant (MDR) bacteria. There is global consensus that new preventive and therapeutic strategies are urgently needed to combat the growing problem of MDR bacterial infections. Here, we report on the efficacy of a novel macrocyclic peptide, minimized theta-defensin (MTD)-12813 in CRE sepsis. MTD12813 is a theta-defensin inspired cyclic peptide that is highly effective against CRE pathogens K. pneumoniae and E. coli in vivo. In mouse septicemia models, single dose administration of MTD12813 significantly enhanced survival by promoting rapid host-mediated bacterial clearance and by modulating pathologic cytokine responses, restoring immune homeostasis, and preventing lethal septic shock. The peptide lacks direct antibacterial activity in the presence of mouse serum or in peritoneal fluid, further evidence for its indirect antibacterial mode of action. MTD12813 is highly stable in biological matrices, resistant to bacterial proteases, and nontoxic to mice at dose levels 100 times the therapeutic dose level, properties which support further development of the peptide as a first in class anti-infective therapeutic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648872PMC
http://dx.doi.org/10.1038/s41598-021-02619-yDOI Listing

Publication Analysis

Top Keywords

macrocyclic peptide
8
bacterial infections
8
cre pathogens
8
peptide
5
host-directed macrocyclic
4
therapeutic
4
peptide therapeutic
4
therapeutic mdr
4
mdr gram
4
gram negative
4

Similar Publications

Targeted protein degraders, in the form of proteolysis targeting chimaeras (PROTACs) and molecular glues, leverage the ubiquitin-proteasome system to catalytically degrade specific target proteins of interest. Because such molecules can be extremely potent, they have attracted considerable attention as a therapeutic modality in recent years. However, while targeted degraders have great potential, they are likely to face many of the same challenges as more traditional small molecules when it comes to their development as therapeutics.

View Article and Find Full Text PDF

Rapid and Green Anion-Assisted Mechanochemical Peptide Cyclization.

ACS Sustain Chem Eng

January 2025

Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.

A novel mechanochemical approach is described for chloride-templated head-to-tail macrocyclization of a pentapeptide and a hexapeptide. This straightforward method allows the solvent-free preparation of cyclopeptides with yields comparable to solution-based approaches without the need for high dilution of the reaction mixture and with significantly reduced reaction times and organic waste amount.

View Article and Find Full Text PDF

Amyloid self-assembly of α-synuclein (αSyn) is linked to the pathogenesis of Parkinson's disease (PD). Type 2 diabetes (T2D) has recently emerged as a risk factor for PD. Cross-interactions between their amyloidogenic proteins may act as molecular links.

View Article and Find Full Text PDF

Pheophytin-a derivatives possessing plastoquinone and phylloquinone analogs in the peripheral 3-substituent were prepared by Friedel-Crafts reactions of a 3-hydroxymethyl-chlorin as one of the chlorophyll-a derivatives with benzo- and naphthohydroquinones, respectively, and successive oxidation of the 1,4-dihydroxy-aryl groups in the resulting dehydration products. The 3-quinonylmethyl-chlorins exhibited ultraviolet-visible absorption and circular dichroism spectra in acetonitrile, which were composed of those of the starting 3-hydroxymethyl-chlorin and the corresponding methylated benzo- and naphthoquinones. No intramolecular interaction between the chlorin and quinone π-systems was observed in the solution owing to the methylene spacer.

View Article and Find Full Text PDF

Natural product biosynthesis is nature's tinkering ground for developing new enzymes that can achieve chemical transformations that are outside the purview of traditional chemical catalysis. Herein we describe a genome mining approach that leads to the discovery of a halogenase that regioselectively brominates a tryptophan side chain indole for a macrocyclic peptide substrate, enabling downstream chemical arylation by Suzuki-Miyaura coupling. The halogenase was found to prefer a macrocyclic peptide substrate over a linear peptide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!