Winter rapeseed (Brassica rapa L.) is a major oilseed crop in Northern China, where its production was severely affected by chilling and freezing stress. However, not much is known about the role of differentially accumulated proteins (DAPs) during the chilling and freezing stress. In this study, isobaric tag for relative and absolute quantification (iTRAQ) technology was performed to identify DAPs under freezing stress. To explore the molecular mechanisms of cold stress tolerance at the cellular and protein levels, the morphological and physiological differences in the shoot apical meristem (SAM) of two winter rapeseed varieties, Longyou 7 (cold-tolerant) and Lenox (cold-sensitive), were explored in field-grown plants. Compared to Lenox, Longyou 7 had a lower SAM height and higher collar diameter. The level of malondialdehyde (MDA) and indole-3-acetic acid (IAA) content was also decreased. Simultaneously, the soluble sugars (SS) content, superoxide dismutase (SOD) activity, peroxidase (POD) activity, soluble protein (SP) content, and collar diameter were increased in Longyou 7 as compared to Lenox. A total of 6330 proteins were identified. Among this, 98, 107, 183 and 111 DAPs were expressed in L7 CK/Le CK, L7 d/Le d, Le d/Le CK and L7 d/L7 CK, respectively. Quantitative real-time PCR (RT-qPCR) analysis of the coding genes for seventeen randomly selected DAPs was performed for validation. These DAPs were identified based on gene ontology enrichment analysis, which revealed that glutathione transferase activity, carbohydrate-binding, glutathione binding, metabolic process, and IAA response were closely associated with the cold stress response. In addition, some cold-induced proteins, such as glutathione S-transferase phi 2(GSTF2), might play an essential role during cold acclimation in the SAM of Brassica rapa. The present study provides valuable information on the involvement of DAPs during cold stress responses in Brassica rapa L, and hence could be used for breeding experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648733PMC
http://dx.doi.org/10.1038/s41598-021-02707-zDOI Listing

Publication Analysis

Top Keywords

cold stress
16
brassica rapa
16
winter rapeseed
12
freezing stress
12
rapeseed brassica
8
chilling freezing
8
compared lenox
8
collar diameter
8
stress
7
daps
6

Similar Publications

Natural variation of CTB5 confers cold adaptation in plateau japonica rice.

Nat Commun

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.

During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.

View Article and Find Full Text PDF

Under salt stress, plasma membrane proteins regulate ion homeostasis and the balance between reactive oxygen species (ROS). In this study, we investigated the functions of two small membrane proteins-MsRCI2B (tailless) and MsRCI2E (tailed)-encoded by the RCI2 (Rare Cold Inducible 2) gene family in Medicago sativa (alfalfa). We identified the distinct subcellular localization and expression patterns of these proteins under salt stress.

View Article and Find Full Text PDF

How to survive mild winters: Cold acclimation, deacclimation, and reacclimation in winter wheat and barley.

Plant Physiol Biochem

January 2025

Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.

Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants.

View Article and Find Full Text PDF

Melatonin (MT) is a crucial hormone that controls and positively regulates plant growth under abiotic stress, but the biochemical and physiological processes of the combination of melatonin seed initiation and exogenous spray treatments and their effects on maize germination and seedling salt tolerance are not well understood. Consequently, in this research, we utilized the maize cultivars Zhengdan 958 (ZD958) and Demeiya 1 (DMY1), which are extensively marketed in northeastern China's high-latitude cold regions, to reveal the modulating effects of melatonin on maize salinity tolerance by determining the impacts of varying concentrations of melatonin on maize seedling growth characteristics, osmoregulation, antioxidant systems, and gene expression. The findings revealed that salt stress (100 mM NaCl) significantly inhibited maize seed germination and seedling development, which resulted in significant increases in the HO and O content and decreases in the antioxidant enzyme activity and photosynthetic pigment content in maize seedlings.

View Article and Find Full Text PDF

Tree-ring width chronologies of Du Tour from near the upper treeline in the Western Sayan, Southern Siberia are found to have an exceptional (below mean-3SD) multi-year drop near 1700 CE, highlighted by the seven narrowest-ring years in a 1524-2022 regional chronology occurring in the short span of one decade. Tree rings are sometimes applied to reconstruct seasonal air temperatures; therefore, it is important to identify other factors that may have contributed to the growth suppression. The spatiotemporal scope of the "nosedive" in tree growth is investigated with a large network of (14 sites) and Ledeb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!