A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intelligent Segmentation of Intima-Media and Plaque Recognition in Carotid Artery Ultrasound Images. | LitMetric

Intelligent Segmentation of Intima-Media and Plaque Recognition in Carotid Artery Ultrasound Images.

Ultrasound Med Biol

School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, PR China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, PR China.

Published: March 2022

Ultrasound imaging has been established as an effective method for measuring the thickness of the intima-media, the thickening of which, along with carotid plaque, is an indicator of cerebrovascular diseases. Here, a 2-D V-Net model that can automatically segment the intima-media in carotid artery ultrasound images is proposed. Moreover, a plaque recognition algorithm that automatically identifies plaque-affected areas is described. Performance tests to determine the average accuracy of the intima-media segmentation yielded the following results (expressed as lumen-intima boundary/media-adventitia boundary): intersection over union (IOU) of 0.752/0.813, pixel accuracy of 0.813/0.885 and Dice loss of 0.858/0.897. Finally, average IOU of 0.785, pixel accuracy of 0.825 and Dice loss of 0.866 were obtained for plaque recognition. These results satisfy the threshold for clinical application and indicate that the proposed model can assist doctors in making more efficient and accurate diagnoses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2021.11.001DOI Listing

Publication Analysis

Top Keywords

plaque recognition
12
carotid artery
8
artery ultrasound
8
ultrasound images
8
pixel accuracy
8
dice loss
8
intelligent segmentation
4
intima-media
4
segmentation intima-media
4
plaque
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!