Bacterial pathogens commonly carry prophages that express virulence factors, and human strains of Staphylococcus aureus carry Sa3int phages, which promote immune evasion. Recently, however, these phages have been found in livestock-associated, methicillin-resistant S. aureus (LA-MRSA). This is surprising, as LA-MRSA strains contain a mutated primary bacterial integration site, which likely explains why the rare integration events that do occur mostly happen at alternative locations. Using deep sequencing, we show that after initial integration at secondary sites, Sa3int phages adapt through nucleotide changes in their attachment sequences to increase homology with alternative bacterial attachment sites. Importantly, this homology significantly enhances integrations in new rounds of infections. We propose that promiscuity of the phage-encoded tyrosine recombinase is responsible for establishment of Sa3int phages in LA-MRSA. Our results demonstrate that phages can adopt extensive population heterogeneity, leading to establishment in strains lacking bona fide integration sites. Ultimately, their presence may increase virulence and zoonotic potential of pathogens with major implications for human health. A growing number of humans are being infected by antibiotic resistant Staphylococcus aureus originating from livestock. The preference of S. aureus for humans or animals is in part determined by factors encoded by viruses (phages) that reside in the bacterial genome. Here, we reveal a process by which phages adapt to and become integrated in new strains of S. aureus lacking the preferred phage integration site. We propose that this is due to the relaxed specificity of a phage-encoded enzyme called recombinase. As this recombinase is used by many other phages, our results might have implications for a broader range of phages. Importantly, the adaptation described here enables S. aureus to jump between host organisms and increases its zoonotic threat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649754PMC
http://dx.doi.org/10.1128/mBio.02259-21DOI Listing

Publication Analysis

Top Keywords

phages adapt
12
sa3int phages
12
phages
9
staphylococcus aureus
8
integration site
8
aureus
6
integration
5
staphylococcal phages
4
adapt hosts
4
hosts extensive
4

Similar Publications

Combining computational modeling and experimental library screening to affinity-mature VEEV-neutralizing antibody F5.

Protein Sci

February 2025

Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, USA.

Engineered monoclonal antibodies have proven to be highly effective therapeutics in recent viral outbreaks. However, despite technical advancements, an ability to rapidly adapt or increase antibody affinity and by extension, therapeutic efficacy, has yet to be fully realized. We endeavored to stand-up such a pipeline using molecular modeling combined with experimental library screening to increase the affinity of F5, a monoclonal antibody with potent neutralizing activity against Venezuelan Equine Encephalitis Virus (VEEV), to recombinant VEEV (IAB) E1E2 antigen.

View Article and Find Full Text PDF

Evolutionary diversification and succession of soil huge phages in glacier foreland.

Microbiome

January 2025

Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.

Background: Huge phages (genome size ≥ 200 kb) have been detected in diverse habitats worldwide, infecting a variety of prokaryotes. However, their evolution and adaptation strategy in soils remain poorly understood due to the scarcity of soil-derived genomes.

Results: Here, we conduct a size-fractioned (< 0.

View Article and Find Full Text PDF

Auxiliary metabolic genes encoded by bacteriophages can influence host metabolic function during infection. In temperate phages, auxiliary metabolic genes may increase host fitness when integrated as prophages into the host genome. However, little is known about the contribution of prophage-encoded auxiliary metabolic genes to host metabolic properties.

View Article and Find Full Text PDF

Novel adaptive immune systems in pristine Antarctic soils.

Sci Rep

January 2025

Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.

Antarctic environments are dominated by microorganisms, which are vulnerable to viral infection. Although several studies have investigated the phylogenetic repertoire of bacteria and viruses in these poly-extreme environments with freezing temperatures, high ultra violet irradiation levels, low moisture availability and hyper-oligotrophy, the evolutionary mechanisms governing microbial immunity remain poorly understood. Using genome-resolved metagenomics, we test the hypothesis that Antarctic poly-extreme high-latitude microbiomes harbour diverse adaptive immune systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!