Computed Tomography (CT) imaging is used in Radiation Therapy planning, where the treatment is carefully tailored to each patient in order to maximize radiation dose to the target while decreasing adverse effects to nearby healthy tissues. A crucial step in this process is manual organ contouring, which if performed automatically could considerably decrease the time to starting treatment and improve outcomes. Computerized segmentation of male pelvic organs has been studied for decades and deep learning models have brought considerable advances to the field, but improvements are still demanded. A two-step framework for automatic segmentation of the prostate, bladder and rectum is presented: a convolutional neural network enhanced with attention gates performs an initial segmentation, followed by a region-based active contour model to fine-tune the segmentations to each patient's specific anatomy. The framework was evaluated on a large collection of planning CTs of patients who had Radiation Therapy for prostate cancer. The Surface Dice Coefficient improved from 79.41 to 81.00% on segmentation of the prostate, 94.03-95.36% on the bladder and 82.17-83.68% on the rectum, comparing the proposed framework with the baseline convolutional neural network. This study shows that traditional image segmentation algorithms can help improve the immense gains that deep learning models have brought to the medical imaging segmentation field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2021.105107 | DOI Listing |
Appl Neuropsychol Adult
January 2025
Faculty Xavier Institute of Engineering, Mahim, India.
In the fields of engineering, science, technology, and medicine, artificial intelligence (AI) has made significant advancements. In particular, the application of AI techniques in medicine, such as machine learning (ML) and deep learning (DL), is rapidly growing and offers great potential for aiding physicians in the early diagnosis of illnesses. Depression, one of the most prevalent and debilitating mental illnesses, is projected to become the leading cause of disability worldwide by 2040.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.
Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Public Health, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan, 81 562-93-2476, 81 562-93-3079.
Background: Estimating the prevalence of schizophrenia in the general population remains a challenge worldwide, as well as in Japan. Few studies have estimated schizophrenia prevalence in the Japanese population and have often relied on reports from hospitals and self-reported physician diagnoses or typical schizophrenia symptoms. These approaches are likely to underestimate the true prevalence owing to stigma, poor insight, or lack of access to health care among respondents.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States.
Pathway analysis plays a critical role in bioinformatics, enabling researchers to identify biological pathways associated with various conditions by analyzing gene expression data. However, the rise of large, multi-center datasets has highlighted limitations in traditional methods like Over-Representation Analysis (ORA) and Functional Class Scoring (FCS), which struggle with low signal-to-noise ratios (SNR) and large sample sizes. To tackle these challenges, we use a deep learning-based classification method, Gene PointNet, and a novel $P$-value computation approach leveraging the confusion matrix to address pathway analysis tasks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!