Objective: To evaluate the performance of a deep learning-based computer-aided detection (DL-CAD) system in a Chinese low-dose CT (LDCT) lung cancer screening program.

Materials And Methods: One-hundred-and-eighty individuals with a lung nodule on their baseline LDCT lung cancer screening scan were randomly mixed with screenees without nodules in a 1:1 ratio (total: 360 individuals). All scans were assessed by double reading and subsequently processed by an academic DL-CAD system. The findings of double reading and the DL-CAD system were then evaluated by two senior radiologists to derive the reference standard. The detection performance was evaluated by the Free Response Operating Characteristic curve, sensitivity and false-positive (FP) rate. The senior radiologists categorized nodules according to nodule diameter, type (solid, part-solid, non-solid) and Lung-RADS.

Results: The reference standard consisted of 262 nodules ≥ 4 mm in 196 individuals; 359 findings were considered false positives. The DL-CAD system achieved a sensitivity of 90.1% with 1.0 FP/scan for detection of lung nodules regardless of size or type, whereas double reading had a sensitivity of 76.0% with 0.04 FP/scan (P = 0.001). The sensitivity for detection of nodules ≥ 4 - ≤ 6 mm was significantly higher with DL-CAD than with double reading (86.3% vs. 58.9% respectively; P = 0.001). Sixty-three nodules were only identified by the DL-CAD system, and 27 nodules only found by double reading. The DL-CAD system reached similar performance compared to double reading in Lung-RADS 3 (94.3% vs. 90.0%, P = 0.549) and Lung-RADS 4 nodules (100.0% vs. 97.0%, P = 1.000), but showed a higher sensitivity in Lung-RADS 2 (86.2% vs. 65.4%, P < 0.001).

Conclusions: The DL-CAD system can accurately detect pulmonary nodules on LDCT, with an acceptable false-positive rate of 1 nodule per scan and has higher detection performance than double reading. This DL-CAD system may assist radiologists in nodule detection in LDCT lung cancer screening.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2021.110068DOI Listing

Publication Analysis

Top Keywords

dl-cad system
24
double reading
24
lung cancer
12
cancer screening
12
performance deep
8
deep learning-based
8
lung nodule
8
ldct lung
8
reading dl-cad
8
senior radiologists
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!