Thermochemical recycling of plastic waste to base chemicals via pyrolysis followed by a minimal amount of upgrading and steam cracking is expected to be the dominant chemical recycling technology in the coming decade. However, there are substantial safety and operational risks when using plastic waste pyrolysis oils instead of conventional fossil-based feedstocks. This is due to the fact that plastic waste pyrolysis oils contain a vast amount of contaminants which are the main drivers for corrosion, fouling and downstream catalyst poisoning in industrial steam cracking plants. Contaminants are therefore crucial to evaluate the steam cracking feasibility of these alternative feedstocks. Indeed, current plastic waste pyrolysis oils exceed typical feedstock specifications for numerous known contaminants, e.g. nitrogen (∼1650 vs. 100 ppm max.), oxygen (∼1250 vs. 100 ppm max.), chlorine (∼1460vs. 3 ppm max.), iron (∼33 vs. 0.001 ppm max.), sodium (∼0.8 vs. 0.125 ppm max.)and calcium (∼17vs. 0.5 ppm max.). Pyrolysis oils produced from post-consumer plastic waste can only meet the current specifications set for industrial steam cracker feedstocks if they are upgraded, with hydrogen based technologies being the most effective, in combination with an effective pre-treatment of the plastic waste such as dehalogenation. Moreover, steam crackers are reliant on a stable and predictable feedstock quality and quantity representing a challenge with plastic waste being largely influenced by consumer behavior, seasonal changes and local sorting efficiencies. Nevertheless, with standardization of sorting plants this is expected to become less problematic in the coming decade.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769047 | PMC |
http://dx.doi.org/10.1016/j.wasman.2021.11.009 | DOI Listing |
Bioresour Technol
January 2025
BioTeC+ - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Gebroeders De Smetstraat 1, 9000 Gent, Belgium.
Environmental pollution from packaging, has led to a need for sustainable alternatives. This study investigates the biodegradation of polylactic acid (PLA) by Amycolatopsis orientalis and Amycolatopsis thailandensis after thermal and thermal-alkaline pretreatments. The biodegradation was assessed based on weight loss, CO evolution, carbon balance analysis and scanning electron microscopy (SEM).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India.
Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies.
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150 Thailand.
This study aimed to fabricate edible films from tapioca (T) and potato (P) starch, assessing their physicochemical properties and biodegradation across different ratios (T100P0, T70P30, T50P50, and T30P70). The films underwent evaluation for moisture content, thickness, water vapor permeability, and color values. T100P0 and T30P70 formulations exhibited the highest film transparency at 43.
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
Dept. of Food Processing Tech. A. D. Patel Institute of Technology, Charutar Vidya Mandal University, New Vallabh Vidyanagar, Anand, Gujarat India.
Unlabelled: A huge amount of fruits and vegetables is being produced and processed in India and therefore the waste is also generated in high quantities. These wastes are good sources of vitamins, enzymes, cellulose, and many other essential compounds. The non-utilization of these bio-wastes leads to economic loss and also environmental problems.
View Article and Find Full Text PDFEnviron Sci Ecotechnol
January 2025
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!