Novel detection method for gallic acid: A water soluble boronic acid-based fluorescent sensor with double recognition sites.

Bioorg Med Chem Lett

Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China; Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China; Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China. Electronic address:

Published: February 2022

As one of the widespread phenols in nature, gallic acid (GA) has attracted a subject of attention due to its extensive biological properties. It is very important and significant to develop a sensitive and selective gallic acid sensor. In recent years, owing to their reversible covalent binding with Lewis bases and polyols, boronic acid compounds have been widely reported as fluorescence sensors for the identification of carbohydrates, ions and hydrogen peroxide, etc. However, boronic acid sensors for specific recognition of gallic acid have not been reported. Herein, a novel water-soluble boronic acid sensor with double recognition sites is reported. When the concentration of gallic acid added was 1.1 × 10 M, the fluorescence intensity of sensor 9b decreased by 80%, followed by pyrogallic acid and dopamine. However, the fluorescence of the sensor 9b combined with other analytes such as ATP, sialic acid, and uridine was basically unchanged, indicating that the sensor 9b had no ability to recognize these analytes. Also, sensor 9b has a fast response time to gallic acid at room temperature, and has a high binding constant (12355.9 ± 156.89 M) and low LOD (7.30 × 10 M). Moreover, gallic acid content of real samples was also determined, and the results showed that this method has a higher recovery rate. Therefore, sensor 9b can be used as a potential tool for detecting biologically significant gallic acid in actual samples such as food, medicine, and environmental analysis samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2021.128483DOI Listing

Publication Analysis

Top Keywords

gallic acid
32
acid
13
boronic acid
12
gallic
8
sensor
8
sensor double
8
double recognition
8
recognition sites
8
acid sensor
8
novel detection
4

Similar Publications

Correction for 'Construction of a sustained-release hydrogel using gallic acid and lysozyme with antimicrobial properties for wound treatment' by Wei Gong , , 2022, , 6836-6849, https://doi.org/10.1039/D2BM00658H.

View Article and Find Full Text PDF

Hydrodynamic cavitation induced fabrication of soy protein isolate-polyphenol complexes: Structural and functional properties.

Curr Res Food Sci

January 2025

School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China.

The combination of polyphenols and protein can improve the functional characteristics of protein. How to effectively promote the binding of polyphenols to protein is still a difficult topic. In this study, hydrodynamic cavitation (HC) was used to induce the fabrication of complexes between soy protein isolate (SPI) and different polyphenols (tannic acid (TA), chlorogenic acid (CGA), ferulic acid (FA), caffeic acid (CA), and gallic acid (GA)).

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer, characterized by frequent recurrence, metastasis, and poor survival outcomes despite chemotherapy-based treatments. This study aims to investigate the mechanisms by which Traditional Chinese Medicine (TCM) modulates the tumor immune microenvironment in TNBC, utilizing CiteSpace and bioinformatics analysis.

Methods: We employed CiteSpace to analyze treatment hotspots and key TCM formulations, followed by bioinformatics analysis to identify the main active components, targets, associated pathways, and their clinical implications in TNBC treatment.

View Article and Find Full Text PDF

Comprehensive Analysis of Metabolic Changes in Mice Exposed to Corilagin Based on GC-MS Analysis.

Drug Des Devel Ther

January 2025

Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, People's Republic of China.

Background: Corilagin is widely distributed in various medicinal plants. In recent years, numerous pharmacological activities of Corilagin have been reported, including anti-inflammatory, antiviral, hepatoprotective, anti-tumor, and anti-fibrosis effects. However, there is still a need for systematic metabolomics analysis to further elucidate its mechanisms of action.

View Article and Find Full Text PDF

Objective: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly impairs muscle regeneration following injuries, contributing to numerous complications and reduced quality of life. There is an urgent need for therapeutic strategies that can enhance muscle regeneration and alleviate these pathological mechanisms. In this study, we evaluate the therapeutic efficacy of W-GA nanodots, which are composed of gallic acid (GA) and tungstate (W6+), on muscle regeneration in type 2 diabetes mellitus (T2D)-induced muscle injury, with a focus on their anti-inflammatory and antioxidative effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!