Heavy metals contamination, potential pathways and risks along the Indus Drainage System of Pakistan.

Sci Total Environ

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China. Electronic address:

Published: February 2022

Riverine water exposed to heavy metals (HMs) pollution is a major concern in the world because of its serious effects on ecosystem and human health. This study assessed the pollution status, sources, diffusion and potential risks of Mn, Co, Cu, Zn, Cr, Ni, Cd, Hg and Pb for the first time along the entire Indus Drainage System of Pakistan. The concentrations of nine HMs in the riverine water ranged from 5.05-101.59 μg/L with a mean value of 41.51 μg/L. The overall metals quantification along the drainage was significantly high (27% of the total) in River Chenab followed by River Indus (26%) > Soan (20%) > Ravi (19%) > Kabul (5%) > Swat (3%). The potential sources of contamination were identified to be the surrounding geogenic activities, industrial/municipal wastewater discharges, agricultural and surface runoffs by using multivariate statistics including metals correlation analysis, hierarchical cluster analysis and principal component analysis. The average mass flux of ∑HMs in the entire drainage was approximately 10.24 tons/year, to which the River Indus contributed 84% of the total, Chenab 11%, Ravi 3%, Kabul 1%, and Soan 1% with more prevalence of biological essential (Zn&Mn) and non-essential (Ni&Cr) metals. In terms of ecological risk, the riverine water metals contamination (1.59 to 57.06) was within the risk threshold (ERI < 110), while the risks of ∑carcinogenic metals for exposed children and adults along the basin were significantly influenced between acceptable to high cancer risk by Cd, Co, Ni, Cr and Pb.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.151994DOI Listing

Publication Analysis

Top Keywords

riverine water
12
heavy metals
8
metals contamination
8
indus drainage
8
drainage system
8
system pakistan
8
river indus
8
metals
5
contamination potential
4
potential pathways
4

Similar Publications

Understanding the distribution and drivers of microplastics (MPs) in remote and sensitive environments is essential for assessing their ecological impacts and devising mitigation strategies. This study investigates the distribution and characteristics of MPs in streams and sediments of the Mt. Everest region.

View Article and Find Full Text PDF

An integrated understanding of dissolved phosphorous (DP) export mechanism and controls on export over dry and wet periods is crucial for riverine ecological restorations in dammed river basins considering its high bioavailability and retention rates at dams. Riverine DP transport patterns (composition, sources, and transport pathways), export controls, and fate were investigated over the 2020 wet season (5 events) and dry seasons before and after it (2 events: dry and dry) in a semi-arid, small-dammed watershed to comprehend the links between terrestrial DP sources and aquatic DP sinks. Close spatiotemporal monitoring of the full range of phosphorous and total suspended solids (TSSs) and subsequent analyses (hysteresis, hierarchical partitioning, and coefficient of variation) provided the basis for the study.

View Article and Find Full Text PDF

This review provides a comprehensive global overview of the occurrences, distribution, emissions, and associated risks of perfluoroalkyl acids (PFAAs) in riverine systems across both developed and developing countries including the United States (US), Spain, France, Netherlands, Germany, Pakistan, China, Korea, Vietnam, Italy, and Japan. Data for this review were systematically gathered through a comprehensive and structured search process using various databases, search engines, and academic repositories to identify relevant literature and studies. Human health risks were assessed using recommended United States Environmental Protection Agency (USEPA) models, including estimated daily intake (EDI), hazard risk (HR), and hazard index (HI) for each reported PFAA compound in the studied countries.

View Article and Find Full Text PDF

Spatial and temporal (annual and decadal) trends of metal(loid) concentrations and loads in an acid mine drainage-affected river.

Sci Total Environ

January 2025

Camborne School of Mines, Department of Earth and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK; Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK.

Acid mine drainage (AMD) is a worldwide problem that degrades river systems and is difficult and expensive to remediate. To protect affected catchments, it is vital to understand the behaviour of AMD-related metal(loid) contaminants as a function of space and time. To address this, the sources, loads and transport mechanisms of arsenic (As), copper (Cu), zinc (Zn), iron (Fe) and sulfur (S) in a representative AMD-affected catchment (the Carnon River in Cornwall, UK) were determined over a 12-month sampling period and with 22 years of monitoring data collected by the Environment Agency (England) (EA).

View Article and Find Full Text PDF

Genetic diversity is crucial to secure the survival and sustainability of ecosystems. Given anthropogenic pressure, as well as the projected alterations connected with the level and circulation of water, riparian forests are of particular concern. In this paper, we assessed the genetic variation of black poplar - one of the keystone tree species of riverine forests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!