Lignin-based fluorescence-switchable graphene quantum dots for Fe and ascorbic acid detection.

Int J Biol Macromol

Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China.

Published: January 2022

The synthesis of lignin-based graphene quantum dots (GQDs) with excellent fluorescence stability, quantum yield, and biocompatibility for sensitive and selective detection of Fe and ascorbic acid (AA) has remained a challenging endeavor. Using an acidolysis process with 17.5% nitric acid followed by hydrothermal treatment at 200 °C, this study provided an improved synthesis route for the production of high-quality GQDs from alkali lignin. The nitrogen-doped GQDs exhibit remarkable fluorescence stability under a wide range of pH (3-10), duration (1-12 h), and [NaCl] (0-1000 mM) conditions, and have a high quantum yield of 28%. The GQDs or GQDs/Fe sensing systems ([GQDs] at 50 mg L, [Fe] at 500 μmol L, and UV excitation at 370 nm) for fluorescence sensing of Fe or AA have excellent sensitivity, selectivity, and reproducibility. For Fe and AA, the limit of detection is 1.49 and 1.62 μmol L, respectively. Mechanism investigation shows that photoluminescence quenching is caused by the formation of GQDs-Fe complexes, whereas fluorescence recovery is due to Fe reduction by AA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.11.199DOI Listing

Publication Analysis

Top Keywords

graphene quantum
8
quantum dots
8
ascorbic acid
8
fluorescence stability
8
quantum yield
8
lignin-based fluorescence-switchable
4
fluorescence-switchable graphene
4
quantum
4
dots ascorbic
4
acid detection
4

Similar Publications

Microwave synthesis of molybdenum disulfide quantum dots and the application in bilirubin sensing.

Methods Appl Fluoresc

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China, Shenyang, 110004, CHINA.

Molybdenum disulfide quantum dots (MoS2 QDs) is a new type of graphite like nanomaterial, which exhibited well chemical stability, unique fluorescence characteristics, and excellent biocompatibility. The conventional hydrothermal synthesis of MoS2 generally requires a long-term reaction at high temperature and high pressure. Herein, we have developed a simple and fast MoS2 QDs synthesis scheme using microwave heating, and further modified the surface of MoS2 QDs using 3-aminophenylboronic acid.

View Article and Find Full Text PDF

Amplified electrochemiluminescence of Ru(dcbpy) via coreactant active sites on nitrogen-doped graphene quantum dots.

Talanta

January 2025

School of Agricultural Engineering, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China. Electronic address:

Searching for new alternative to tripropylamine (TPrA) with low toxicity and high chemical stability for the tris(4,4'-dicarboxylic acid-2,2'-bipyridyl)ruthenium (II) (Ru(dcbpy)) based coreactant electrochemiluminescence (ECL) system is essential for widespread analytical applications. Here, nitrogen-doped graphene quantum dots (NGQDs) have been discovered to significantly amplify the ECL emission and increase the ECL efficiency of Ru(dcbpy) for the first time. However, the mechanism by which NGQDs act as coreactants is not well comprehended.

View Article and Find Full Text PDF

Photodynamic bactericidal nanomaterials in food packaging: From principle to application.

J Food Sci

January 2025

Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China.

Compared to traditional preservatives, photodynamic inactivation (PDI) offers a promising bactericidal approach due to its nontoxic nature and low propensity for microbial resistance. In this paper, we initially investigate the principles and antibacterial mechanisms underlying PDI. We then review factors influencing PDI's germicidal efficacy in food preservation.

View Article and Find Full Text PDF

A label-free electrochemical biosensor based on graphene quantum dots-nanoporous gold nanocomposite for highly sensitive detection of glioma cell.

Anal Chim Acta

February 2025

School of Life Sciences, The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China. Electronic address:

Background: Glioma accounts for 80 % of all malignant primary brain tumors with a high mortality rate. Histopathological examination is the current diagnostic methods for glioma, but its invasive surgical interventions can cause cerebral edema or impair neural functioning. Liquid biopsy proves to be an efficient method for glioma detection.

View Article and Find Full Text PDF

Oseltamivir is a drug that has been widely used to prevent and treat influenza A and B. In this work, an ultrasensitive, simple, and novel electrochemiluminescence (ECL) sensor combined with molecularly imprinted polymers (MIP-ECL) based on a graphene-like two-dimensional material, Mxene quantum dots (MQDs) was constructed to selectively detect oseltamivir. A molecularly imprinted polymer membrane containing an oseltamivir template was constructed by electropolymerization and elution of modified MQDs on a glassy carbon electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!