Immobilization of horseradish peroxidase on lysine-functionalized gum Arabic-coated FeO nanoparticles for cholesterol determination.

Prep Biochem Biotechnol

Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

Published: August 2022

Background: Horseradish Peroxidase (HRP) is ranked as one of the most important industrial enzymes that is extensively used in industry. Cholesterol is routinely detected indirectly by cholesterol oxidase in the presence of O, liberating HO as a by-product. The HO content is determined through the HRP activity in the presence of a redox dye, producing a red colored quinoneimine which can be measured quantitatively. Herein, we have designed a magnetic nanoparticle for reusing and easily separating HRP as the most expensive compartment for the low-cost cholesterol assay.

Methods: The gum Arabic coated magnetic nanoparticles were functionalized with L-lysine linker for maintaining protein flexibility on nanoparticle. Enzyme-loaded nanoparticles were characterized by TEM, FTIR, DLS, VSM and XRD analysis.

Results: The immobilization efficiency was ∼65% and the immobilized HRP retained 60% of its activity after 8 times reuse. The optimum pH and thermal stability shifted from 7.0 to 8.0 and 60 to 70 °C after immobilization, respectively. Storage stability of HRP was improved by 10%, at 4 °C for 60 days. Immobilized HRP showed more catalytic activity in presence of Fe, Ca and Na. The designed system has cholesterol detection linearity range from 0.2 to 5.0 mM and detection limit of 0.08 mM and acceptable correlation coefficient of 0.9973 and 0.9982 on sample serum using both chromogens.

Conclusion: The HRP-loaded magnetic nanoparticles are capable of being used as a cost-effective system for cholesterol determination in laboratory due to its reusability and stability benefits.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10826068.2021.1992780DOI Listing

Publication Analysis

Top Keywords

horseradish peroxidase
8
cholesterol determination
8
activity presence
8
magnetic nanoparticles
8
immobilized hrp
8
system cholesterol
8
cholesterol
6
hrp
6
immobilization horseradish
4
peroxidase lysine-functionalized
4

Similar Publications

The treatment of diabetic wounds with bacterial infection is a major challenge in the medical field. Microenvironment-responsive hydrogel dressings have shown great advantages, and photothermal antibacterial therapy is a potential antimicrobial strategy to avoid the generation of resistant bacteria. In this work, a glucose-triggered near-infrared (NIR)-responsive photothermal antibacterial hydrogel was designed and named GOGD based on a cascade reaction of glucose oxidation and polyphenol polymerization.

View Article and Find Full Text PDF

Coproantigen detection and molecular identification of Cryptosporidium species among newborn and adult farm animals.

AMB Express

January 2025

Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, El Buhouth St., Dokki, Giza, Egypt.

Cryptosporidium sp. is an obligatory intracellular apicomplexan protozoan parasite that causes a disease called cryptosporidiosis with substantial veterinary and medical importance. Therefore, this study aimed to evaluate an early diagnosis of cryptosporidiosis using the anti-Cryptosporidium parvum oocyst immunoglobulin IgG polyclonal antibodies (anti-C.

View Article and Find Full Text PDF

Combining Hard Shell with Soft Core to Enhance Enzyme Activity and Resist External Disturbances.

Adv Sci (Weinh)

January 2025

Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, 317500, China.

Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells.

View Article and Find Full Text PDF

Injectable biomimetic hydrogel based on modified chitosan and silk fibroin with decellularized cartilage extracellular matrix for cartilage repair and regeneration.

Int J Biol Macromol

January 2025

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94th, Tianjin 300071, PR China. Electronic address:

Cartilage defect repair remains a challenge for clinicians due to the limited self-healing capabilities of cartilage. Microenvironment-specific biomimetic hydrogels have shown great potential in cartilage regeneration because of their excellent biological properties. In this study, a hydrogel system consisting of p-hydroxybenzene propanoic acid-modified chitosan (PC), silk fibroin (SF) and decellularized cartilage extracellular matrix (DCM) was prepared.

View Article and Find Full Text PDF

Oxidized low-density lipoprotein (oxLDL) is the leading cause of atherosclerosis and cardiovascular disease development. An enzyme-linked immunosorbent assay (ELISA)-mimic system for sensitive and specific oxLDL determination was developed using selective aptamer-molecularly imprinted polymer nanoparticles (AP-MIP NP) coupled with an immunology-based colorimetric assay. The AP-MIP NP were synthesized using solid-phase molecular imprinting by incorporating aptamers into the MIP NP cavities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!