Cyanide removal from aqueous environment by resting cells and PTFE immobilized cells of Sphingobacterium spp.

J Basic Microbiol

Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.

Published: March 2022

Microbial detoxification of cyanide offered an inexpensive, safe, and viable alternative to physiochemical processes for the treatment of cyanide in industrial effluents or contaminated sites. This study involved isolation of novel strain with high resistance against cyanide toxicity and able to degrade the cyanide radical. The strain was isolated from rocky area and identified as Sphingobacterium multivorium using 16S ribosomal RNA. Resting pregrown cells were used in simple reaction mixture to avoid the complication associated with the media. One-gram fresh weight of this bacteria was able to remove 98.5% from 1.5 g/L cyanide which is a unique result. Factor affecting the biochemical process such as pH, temperature, agitation, glucose concentration was examined. The optimum conditions were, pH 6-7, 30-40°C, and 100-150 rpm shaking speed and 0.25% glucose. Furthermore, the cells were used after immobilization in polytetrafluoroethylene (PTFE) polymer. The PTFE is very safe carrier and the cells withstand the entrapment process and were able to remove 92% (1 g/L cyanide). The immobilized cells were used for six successive cycles with about 50% removal efficiency. The storage life extended to 14 days. No previous work studied the cyanide removal by Sphingobacterium spp. The strain showed good applicable characters.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jobm.202100292DOI Listing

Publication Analysis

Top Keywords

cyanide
8
cyanide removal
8
immobilized cells
8
sphingobacterium spp
8
cells
6
removal aqueous
4
aqueous environment
4
environment resting
4
resting cells
4
cells ptfe
4

Similar Publications

Introduction: The persistence of in the contaminated environment is sustained by tolerance to biocides and ability to growth as biofilm. The aim of the study was to analyze the susceptibility of biofilms to chlorhexidine (CHX) and benzalkonium (BZK) biocides and the ability of natural monomeric stilbenoid resveratrol (RV) to modulate the phenomenon.

Methods: Biofilm formation and preformed biofilm were tested by Crystal violet and tetrazolium salt reduction assay, respectively.

View Article and Find Full Text PDF

We designed a new cyanide sensing probe by one-step synthesis and evaluated it using UV-vis and fluorescent techniques. The active moiety of (Z)-3-(4-(methylthio) phenyl)-2-(4-nitrophenyl) acrylonitrile (NCS) demonstrated fluorescence. The probe NCS showed turn-off fluorescence in the presence of cyanide (CN¯), which has a higher selectivity and sensitivity than other anions.

View Article and Find Full Text PDF

The origin of life on Earth remains one of the most perplexing challenges in biochemistry. While numerous bottom-up experiments under prebiotic conditions have provided valuable insights into the spontaneous chemical genesis of life, there remains a significant gap in the theoretical understanding of the complex reaction processes involved. In this study, we propose a novel approach using a roto-translationally invariant potential (RTIP) formulated with pristine Cartesian coordinates to facilitate the simulation of chemical reactions.

View Article and Find Full Text PDF

Strawberry (Fragaria × ananassa) is a horticultural crop known for its sensitivity to mechanical damage and susceptibility to postharvest decay. In recent years, various strategies have been implemented to enhance both the yield and quality of strawberries, among which the application of nitric oxide-producing compounds has garnered special attention. The present study aimed to investigate the effects of varying concentrations of sodium nitroprusside (SNP), specifically 0, 200, 400, and 600 μM, on strawberries (cv.

View Article and Find Full Text PDF

Integration of transcriptomics and metabolomics reveals the mechanism of enrofloxacin resistance in Aeromonas schubertii.

Microb Pathog

December 2024

Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China. Electronic address:

Aeromonas schubertii infections has caused severe economic losses in aquaculture in China. In this study, we first induced enrofloxacin (ENR) resistance in A. schubertii strains and then analyzed the mechanisms of drug resistance using transcriptomics and metabolomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!