Regulatory elements, such as promoters and enhancers, typically show reduced nucleosome occupancy, which is a feature that is commonly referred to as "open chromatin". The distribution of open chromatin sites can provide important clues about the transcription factors and regulatory networks that drive gene expression in a given cell. Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) is a rapid and robust method for mapping open chromatin sites. ATAC-seq data can also discern the binding sites of nucleosomes and transcription factors. In this chapter, we describe how to produce and assess the quality of ATAC-seq libraries that are generated from naïve human pluripotent stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1908-7_13DOI Listing

Publication Analysis

Top Keywords

pluripotent stem
8
stem cells
8
open chromatin
8
chromatin sites
8
transcription factors
8
mapping chromatin
4
chromatin accessibility
4
accessibility human
4
human naïve
4
naïve pluripotent
4

Similar Publications

Introduction: Antisense oligonucleotides (ASOs) have shown promise in reducing amyloid precursor protein (APP) levels in neurons, but their effects in astrocytes, key contributors to neurodegenerative diseases, remain unclear. This study evaluates the efficacy of APP ASOs in astrocytes derived from an individual with Down syndrome (DS), a population at high risk for Alzheimer's disease (AD).

Methods: Human induced pluripotent stem cells (hiPSCs) from a healthy individual and an individual with DS were differentiated into astrocytes.

View Article and Find Full Text PDF

Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1).

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) hold great promise for regenerative medicine thanks to their ability to self-renew and differentiate into somatic cells and the germline. ESCs correspond to pluripotent epiblast - the tissue from which the following three germ layers originate during embryonic gastrulation: the ectoderm, mesoderm, and endoderm. Importantly, ESCs can be induced to differentiate toward various cell types by varying culture conditions, which can be exploited for modeling of developmental processes such as gastrulation.

View Article and Find Full Text PDF

Altered protein conformation can cause incurable neurodegenerative disorders. Mutations in , the gene encoding neuroserpin, can alter protein conformation resulting in cytotoxic aggregation leading to neuronal death. Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare autosomal dominant progressive myoclonic epilepsy that progresses to dementia and premature death.

View Article and Find Full Text PDF

c-JUN: a chromatin repressor that limits mesoderm differentiation in human pluripotent stem cells.

Nucleic Acids Res

January 2025

Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China.

Cell fate determination at the chromatin level is not fully comprehended. Here, we report that c-JUN acts on chromatin loci to limit mesoderm cell fate specification as cells exit pluripotency. Although c-JUN is widely expressed across various cell types in early embryogenesis, it is not essential for maintaining pluripotency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!