Stress-Related Herpesvirus Reactivation in Badgers Can Result in Clostridium Proliferation.

Ecohealth

Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, Oxfordshire, OX13 5QL, UK.

Published: December 2021

AI Article Synopsis

  • Clostridium perfringens, a food-borne pathogen commonly found in the guts of mammals, can grow excessively due to factors like coinfections and diet changes.
  • In a study of 69 free-ranging badgers, 15.9% showed detectable C. perfringens DNA in their digestive tracts, regardless of age, sex, or season.
  • Badgers with reactivated genital tract herpesvirus were found to have a higher prevalence of C. perfringens, suggesting that herpesvirus infections may enhance susceptibility to this bacterial pathogen.

Article Abstract

Clostridium perfringens is an important food-borne zoonotic pathogen and a member of the commensal gut microbiome of many mammals. Predisposing factors such as coinfection with other pathogens or diet change can, however, cause overgrowth and subsequent disease development. Here we investigated the occurrence of C. perfringens in a free-ranging badger population with up to 100% prevalence of herpesvirus infection. Herpesvirus reactivation is known to be associated with increased susceptibility bacterial infections. PCR screening of rectal swabs from 69 free-ranging badgers revealed 15.9% (11/69, 95% CI = 9.1-26.3%) prevalence of detectable C. perfringens (Type A) DNA in the digestive tracts of assymptomatic animals. The results of Fisher's exact test revealed C. perfringens detection was not biased by age, sex and seasons. However, badgers with genital tract gammaherpesvirus (MusGHV-1) reactivation (p = 0.007) and infection with a specific MusGHV-1 genotype (p = 0.019) were more prone to of C. perfringens proliferation, indicating coinfection biased dynamics of intestinal C. perfringens. An inclusion pattern analysis further indicated that, causally, MusGHV-1 reactivation potentiated C. perfringens detection. Whether or not specific MusGHV-1 genotype infection or reactivation plays a role in C. perfringens overgrowth or disease development in badgers will require further investigation. Nevertheless, a postmortem examination of a single badger that died of fatal disease, likely associated with C. perfringens, revealed MusGHV-1 detection in the small intestine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742816PMC
http://dx.doi.org/10.1007/s10393-021-01568-2DOI Listing

Publication Analysis

Top Keywords

perfringens
9
herpesvirus reactivation
8
disease development
8
perfringens detection
8
musghv-1 reactivation
8
specific musghv-1
8
musghv-1 genotype
8
reactivation
5
musghv-1
5
stress-related herpesvirus
4

Similar Publications

Marine mucilage disasters, primarily caused by global warming and marine pollution, threaten food security and the sustainability of marine food resources. This study assessed the microbial risks to public health in common sole, deep-water rose shrimp, European anchovy, Atlantic horse mackerel and Mediterranean mussel following the mucilage disaster in the Sea of Marmara in 2021. The total viable count, total Enterobacteriaceae count and the presence of Escherichia coli O157:H7, Salmonella spp.

View Article and Find Full Text PDF

Wastewater treatment plant (WWTP) workers are exposed to bioaerosols containing bacteria, fungi, and endotoxin, potentially posing health risks to workers. This study quantified personal exposure levels to airborne bacteria and fungi, endotoxin, and dust among 44 workers during two seasons at four WWTPs. Associations between the exposure measurements and serum levels of biomarkers CRP, SAA, and CC16 were also assessed.

View Article and Find Full Text PDF

Microbial safety of black soldier fly larvae (Hermetia illucens) reared on food waste streams.

Waste Manag

January 2025

Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia; School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Brisbane, Queensland 4072, Australia.

Black soldier fly larvae (BSFL) can valorise different organic matter and yield a product of high nutritional value. The lack of knowledge about the microbial safety of BSFL grown on different organic waste streams influences the commercialisation of BSFL as stockfeed ingredient. This study evaluates the microbial safety of BSFL grown on five different commercial food waste streams collected from two commercial production facilities.

View Article and Find Full Text PDF

Necrotic enteritis (NE), caused by the gram-positive, anaerobic bacterium, Clostridium perfringens, results in an estimated $6 billion in annual economic losses to the global poultry industry. C. perfringens is part of the normal microflora of the poultry gastrointestinal tract, but damage to the intestinal epithelium can lead to increased cell proliferation and production of toxins which gives rise to disease.

View Article and Find Full Text PDF

Recent genome mining work revealed that unexplored habitats exhibit great potential for discovering new nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides are a group of RiPPs exhibiting a variety of biological functions. They are characterized by the presence of the thioether-containing bis-amino acids lanthionine and/or methyllanthionine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!