Symbiotic nitrogen fixation in legumes is an important source of nitrogen supply in sustainable agriculture. Salinity is a key abiotic stress that negatively affects host plant growth, rhizobium-legume symbiosis and nitrogen fixation. This work investigates how the symbiotic relationship impacts plant response to salinity stress. We assayed the physiological changes and the proteome profile of alfalfa plants with active nodules (NA), inactive nodules (NI) or without nodules (NN) when plants were subjected to salinity stress. Our data suggest that NA plants respond to salinity stress through some unique signalling regulations. NA plants showed upregulation of proteins related to cell wall remodelling and reactive oxygen species scavenging, and downregulation of proteins involved in protein synthesis and degradation. The data also show that NA plants, together with NI plants, upregulated proteins involved in photosynthesis, carbon fixation and respiration, anion transport and plant defence against pathogens. The study suggests that the symbiotic relationship gave the host plant a better capacity to adjust key processes, probably to more efficiently use energy and resources, deal with oxidative stress, and maintain ion homeostasis and health during salinity stress.

Download full-text PDF

Source
http://dx.doi.org/10.1111/plb.13369DOI Listing

Publication Analysis

Top Keywords

salinity stress
20
nitrogen fixation
8
host plant
8
symbiotic relationship
8
data plants
8
proteins involved
8
stress
7
salinity
6
plants
6
proteomic approach
4

Similar Publications

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

During their lifespan, plants are often exposed to a broad range of stresses that change their redox balance and lead to accumulation of reactive oxygen species (ROS). The traditional view is that this comes with negative consequences to cells structural integrity and metabolism and, to prevent this, plants evolved a complex and well-coordinated antioxidant defence system that relies on the operation of a range of enzymatic and non-enzymatic antioxidants (AO). Due to the simplicity of measuring their activity, and in the light of the persistent dogma that stress-induced ROS accumulation is detrimental for plants, it is not surprising that enzymatic AO have often been advocated as suitable proxies for stress tolerance, as well as potential targets for improving tolerance traits.

View Article and Find Full Text PDF

Background And Aims: Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.

Methods: In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.

View Article and Find Full Text PDF

Preliminary assessment of seed heteromorfism as an adaptive strategy of Colobanthus quitensis under saline conditions.

Sci Rep

December 2024

Laboratorio de Biotecnología y Estudios Ambientales, Departamento de Ciencias y Tecnología Vegetal, Escuela de Ciencias y Tecnologías, Universidad de Concepción, Campus Los Ángeles, 4440000, Concepción, Chile.

Colobanthus quitensis is known for enduring extreme conditions, such as high salinity in Antarctica, making it an excellent model for studying environmental stress. In plant families, variations in seed color heteromorphism have been linked to various germination under stress conditions. Preliminary laboratory observations indicated that dark brown seeds of C.

View Article and Find Full Text PDF

Salinity and lead are two important abiotic stresses that limit crop growth and yield. In this study, we assayed the effect of these stresses on tolerant and sensitive maize genotypes. Four-week-old maize plants were treated with 250 mM sodium chloride (NaCl) and 250 µM lead (Pb).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!