The composition of natural gas can vary considerably across different oil and gas fields. Such compositional variation is primarily reflected in the distinctive physical properties of natural gas. However, during practical application in an oil and gas field, a refrigeration temperature drop in a vortex tube is often observed because vortex tubes generally have low intrinsic refrigeration efficiencies. When vortex tubes are applied in oil and gas fields, the utilization of the oil pressure of a natural gas wellhead is often desirable to avoid excessive energy usage from external devices. In this study, a numerical model of a vortex tube was developed, executed, and validated through laboratory experiments. The refrigeration temperature drop values of 12 gases with distinctive physical properties at a total inlet pressure of 0.3 MPa, an inlet temperature of 300 K, and a cooling mass flow ratio of 0.5 were analyzed. The importance of different physical properties was ranked based on the gray correlation method. Additionally, the synergetic effects of the physical properties on the refrigeration temperature drop were analyzed via regression fitting. The results indicate a significant impact of the gas physical properties on the refrigeration temperature drop in the vortex tube. The maximum and minimum refrigeration temperature drop obtained for different gases can differ by up to 16 K. Furthermore, the refrigeration temperature drop in the vortex tube does not change monotonically with any physical property. Instead, it depends on the synergetic effect from the physical properties, which have different levels of influence on it.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638001 | PMC |
http://dx.doi.org/10.1021/acsomega.1c04421 | DOI Listing |
J Phys Chem Lett
January 2025
Faculty of Chemistry, Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
The concept of natural densitals (NDs) and their amplitudes is introduced. These quantities provide the spectral decomposition of the cumulant of the two-electron density that, by definition, quantifies the extent of electron correlation. Consequently, they are ideally suited for a rigorous description of electron correlation effects in Coulombic systems.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Section on Perception, Cognition, Action, Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892.
To what extent does concept formation require language? Here, we exploit color to address this question and ask whether macaque monkeys have color concepts evident as categories. Macaques have similar cone photoreceptors and central visual circuits to humans, yet they lack language. Whether Old World monkeys such as macaques have consensus color categories is unresolved, but if they do, then language cannot be required.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214.
Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell Biology, Duke University Medical Center, Durham, NC 27701.
In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!