The process of restenosis is based on the interplay of various mechanical and biological processes triggered by angioplasty-induced vascular trauma. Early arterial recoil, negative vascular remodeling, and neointimal formation therefore limit the long-term patency of interventional recanalization procedures. The most serious of these processes is neointimal hyperplasia, which can be traced back to 4 main mechanisms: endothelial damage and activation; monocyte accumulation in the subintimal space; fibroblast migration; and the transformation of vascular smooth muscle cells. A wide variety of animal models exists to investigate the underlying pathophysiology. Although mouse models, with their ease of genetic manipulation, enable cell- and molecular-focused fundamental research, and rats provide the opportunity to use stent and balloon models with high throughput, both rodents lack a lipid metabolism comparable to humans. Rabbits instead build a bridge to close the gap between basic and clinical research due to their human-like lipid metabolism, as well as their size being accessible for clinical angioplasty procedures. Every different combination of animal, dietary, and injury model has various advantages and disadvantages, and the decision for a proper model requires awareness of species-specific biological properties reaching from vessel morphology to distinct cellular and molecular features.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617545 | PMC |
http://dx.doi.org/10.1016/j.jacbts.2021.06.006 | DOI Listing |
Front Syst Neurosci
December 2024
Universidade Federal de Goias, School of Electrical, Mechanical and Computer Engineering, Goiânia, Brazil.
Dysfunction in fear and stress responses is intrinsically linked to various neurological diseases, including anxiety disorders, depression, and Post-Traumatic Stress Disorder. Previous studies using in vivo models with Immediate-Extinction Deficit (IED) and Stress Enhanced Fear Learning (SEFL) protocols have provided valuable insights into these mechanisms and aided the development of new therapeutic approaches. However, assessing these dysfunctions in animal subjects using IED and SEFL protocols can cause significant pain and suffering.
View Article and Find Full Text PDFTheranostics
January 2025
Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature, as a primary hallmark of cancer. Developing vasculature is difficult to evaluate but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of cancer spheroids and endothelial cells in a three dimensional environment.
View Article and Find Full Text PDFTheranostics
January 2025
Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University 510515, Guangzhou, Guangdong Province, China.
Photodynamic therapy (PDT) has gained widespread attention in cancer treatment, but it still faces clinical problems such as skin phototoxicity. Activatable photosensitizers offer a promising approach to addressing this issue. However, several significant hurdles need to be overcome, including developing effective activation strategies and achieving the optimal balance between photodynamic effects and related side effects.
View Article and Find Full Text PDFMicroPubl Biol
December 2024
Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, Washington, D.C., United States.
This study explores potential small animal models for the dog hookworm, , a parasitic nematode which has repeatedly exhibited the ability to develop resistance to a range of anthelmintics. Immunomodulated hamsters, gerbils, rats, and mice were infected with Despite varying degrees of immunosuppression, and in some cases, total adaptive immunodeficiency, no adult worms were recovered, and larval arrest (L3 stage) occurred in muscle tissue of mice and hamsters. This highlights the strict host specificity of and emphasizes the challenges of developing rodent models usable for anthelmintic testing with a strict specialist parasite.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
Introduction: Computational fluid dynamics (CFD) is gaining momentum as a useful mechanism for analyzing obstructive disorders and surgeries in humans and warrants further development for application in equine surgery. While advancements in procedures continue, much remains unknown about the specific impact that different surgeries have on obstructive airway disorders. The objective of this study was to apply CFD analysis to an equine head inhalation model replicating recurrent laryngeal neuropathy (RLN) and four surgical procedures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!