Reproduction in Animal Models of Lysosomal Storage Diseases: A Scoping Review.

Front Mol Biosci

Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil.

Published: November 2021

Lysosomal storage diseases (LSDs) are caused by a mutation in a specific gene. Enzymatic dysfunction results in a progressive storage of substrates that gradually affects lysosomal, cellular and tissue physiology. Their pathophysiological consequences vary according to the nature of the stored substrate, making LSDs complex and multisystemic diseases. Some LSDs result in near normal life expectancies, and advances in treatments mean that more people reach the age to have children, so considering the effects of LSDs on fertility and the risks associated with having children is of growing importance. As there is a lack of clinical studies describing the effect of LSDs on the physiology of reproductivity, we undertook a scoping review of studies using animal models of LSDs focusing on reproductive parameters. We searched six databases: MEDLINE, LILACS, Scopus, Web of Science, Embase and SciELO, and identified 49 articles that met our inclusion criteria. The majority of the studies used male animal models, and a number reported severe morphological and physiological damage in gametes and gonads in models of sphingolipidoses. Models of other LSDs, such as mucopolysaccharidoses, presented important morphological damage. Many of the models found alterations in reproductive systems. Any signs of subfertility or morphological damage in animal models are important, particularly in rodents which are extremely fertile, and may have implications for individuals with LSDs. We suggest the use of more female animal models to better understand the physiopathology of the diseases, and the use of clinical case studies to further explore the risks of individuals with LSDs having children.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636128PMC
http://dx.doi.org/10.3389/fmolb.2021.773384DOI Listing

Publication Analysis

Top Keywords

animal models
20
lsds
9
models
8
lysosomal storage
8
storage diseases
8
scoping review
8
diseases lsds
8
models lsds
8
morphological damage
8
individuals lsds
8

Similar Publications

Acanthoside B attenuates NLRP3-mediated pyroptosis and ulcerative colitis through inhibition of tAGE/RAGE pathway.

Allergol Immunopathol (Madr)

January 2025

Department of Neurofunction, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China;

Acanthoside B (Aca.B), a principal bioactive compound extracted from , exhibits superior anti-inflammatory capacity. Ulcerative colitis is a nonspecific inflammatory bowel disease with unknown etiology.

View Article and Find Full Text PDF

Objective: The objective of this systematic review and meta-analysis was to assess the efficacy of melatonin in drug- or contrast-induced AKI in preclinical and clinical studies.

Methods: PubMed, Embase, Scopus, Web of Science (WOS), the Cochrane Database of Systematic Reviews (CDSR), and clinical trials.GOV from the beginning until August 1, 2024.

View Article and Find Full Text PDF

Testing for developmental toxicity is an integral part of chemical regulations. The applied tests are laborious and costly and require a large number of vertebrate test animals. To reduce animal numbers and associated costs, the zebrafish embryo was proposed as an alternative model.

View Article and Find Full Text PDF

Introduction: Osteoarthritis (OA) is a chronic degenerative joint disorder characterized by an imbalance in chondrocyte metabolism. Ferroptosis has been implicated in the pathogenesis of OA. The role of Sirt1, a deacetylase, in mediating deacetylation during ferroptosis in OA chondrocytes remains underexplored.

View Article and Find Full Text PDF

Recent advances in embryology have shown that the sister blastomeres of 2-cell mouse and human embryos differ reciprocally in potency. An open question is whether the blastomeres became different as opposed to originating as different. Here we wanted to test two conflicting models: one proposing that each blastomere contains both animal and vegetal materials in balanced proportions because the plane of first cleavage runs close to the animal-vegetal axis of the fertilized oocyte; and the other model proposing that each blastomere contains variable proportions of animal and vegetal materials because the plane of the first cleavage can vary depending on the topology of fertilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!