Krüppel-like factor 10 (KLF10) is a phospho-regulated transcriptional factor involved in many biological processes including lipogenesis; however, the transcriptional regulation on lipogenesis by KLF10 remains largely unclear. Lipogenesis is important in the development of nonalcoholic fatty liver disease (NAFLD) which was known regulated mainly by AMP-activated protein kinase (AMPK) and sterol regulatory element-binding protein (SREBP-1C). Interesting, our previous study using phosphorylated site prediction suggested a regulation of AMPK on KLF10. Therefore, we aimed to study the protein-protein interactions of AMPK on the regulation of KLF10, and to delineate the mechanisms of phosphorylated KLF10 in the regulation of NAFLD through SREBP-1C. We performed and assays that identified AMPK phosphorylates KLF10 at Thr189 and subsequently modulates the steady state level of KLF10. Meanwhile, a chromatin immunoprecipitation-chip assay revealed the novel target genes and signaling cascades of corresponding to phosphorylated KLF10. SREBP-1C was identified as a target gene suppressed by phosphorylated KLF10 through promoter binding. We further performed high-fat-diet-induced NAFLD models using hepatic-specific KLF10 knockout mice and wild-type mice and revealed that KLF10 knockout markedly led to more severe NAFLD than that in wild-type mice. Taken together, our findings revealed for the first time that AMPK activates and stabilizes the KLF10 protein phosphorylation at Thr189, thereby repressing the expression of SREBP-1C and subsequent lipogenesis pathways along with metabolic disorders. We suggested that the targeted manipulation of liver metabolism, particularly through increased KLF10 expression, is a potential alternative solution for treating NAFLD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633436 | PMC |
http://dx.doi.org/10.3389/fmolb.2021.751938 | DOI Listing |
Transplantation
December 2024
Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.
Background: Hypothermic machine perfusion (HMP) is becoming the main preservation method for donation after circulatory death (DCD) kidneys. It can provide continuous flow and form shear stress (SS) upon endothelial cells (ECs), thereby regulating EC injury. Krüppel-like factor 10 (KLF10) has been shown to lessen vascular damage.
View Article and Find Full Text PDFJ Ethnopharmacol
February 2025
College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China. Electronic address:
Ethnopharmacological Relevance: Glycyrrhiza uralensis Fisch. (GC) is widely utilized in traditional Chinese medicine (TCM) for its properties in Qi tonification, heat clearing, and detoxification. Within TCM theory, Qi is also implicated in tumor development.
View Article and Find Full Text PDFCell Prolif
October 2024
Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
Rotator cuff tear (RCT) is the primary cause of shoulder pain and disability and frequently trigger muscle degeneration characterised by muscle atrophy, fatty infiltration and fibrosis. Single-nucleus RNA sequencing (snRNA-seq) was used to reveal the transcriptional changes in the supraspinatus muscle after RCT. Supraspinatus muscles were obtained from patients with habitual shoulder dislocation (n = 3) and RCT (n = 3).
View Article and Find Full Text PDFPLoS One
October 2024
Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
FEBS J
November 2024
College of Life Sciences, Shaanxi Normal University, Xi'an, China.
Erythropoiesis is a multistep process of erythroid cell production that is controlled by multiple regulatory factors. Ribosome rescue factor PELO plays a crucial role in cell meiotic division and mice embryonic development. However, the function of PELO in erythroid differentiation remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!