PEGylated Doxorubicin Prodrug-Forming Reduction-Sensitive Micelles With High Drug Loading and Improved Anticancer Therapy.

Front Bioeng Biotechnol

Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.

Published: November 2021

Significant efforts on the design and development of advanced drug delivery systems for targeted cancer chemotherapy continue to be a major challenge. Here, we reported a kind of reduction-responsive PEGylated doxorubicin (DOX) prodrug via the simple esterification and amidation reactions, which self-assembled into the biodegradable micelles in solutions. Since there was an obvious difference in the reduction potentials between the oxidizing extracellular milieu and the reducing intracellular fluids, these PEG-disulfide-DOX micelles were localized intracellularly and degraded rapidly by the stimulus to release the drugs once reaching the targeted tumors, which obviously enhanced the therapeutic efficacy with low side effects. Moreover, these reduction-sensitive micelles could also physically encapsulate the free DOX drug into the polymeric cargo, exhibiting a two-phase programmed drug release behavior. Consequently, it showed a potential to develop an intelligent and multifunctional chemotherapeutic payload transporter for the effective tumor therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640247PMC
http://dx.doi.org/10.3389/fbioe.2021.781982DOI Listing

Publication Analysis

Top Keywords

pegylated doxorubicin
8
reduction-sensitive micelles
8
doxorubicin prodrug-forming
4
prodrug-forming reduction-sensitive
4
micelles
4
micelles high
4
drug
4
high drug
4
drug loading
4
loading improved
4

Similar Publications

Doxorubicin or Epirubicin Versus Liposomal Doxorubicin Therapy-Differences in Cardiotoxicity.

Cardiovasc Toxicol

January 2025

Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.

Doxorubicin (DOX) is an important drug used in the treatment of many malignancies. Unfortunately DOX causes various side effects, with cardiotoxicity being the most characteristic. Risk factors for DOX induced cardiotoxicity (DIC) include cumulative dose of DOX, preexisting cardiovascular diseases, dyslipidemia, diabetes, smoking, along with the use of other cardiotoxic agents.

View Article and Find Full Text PDF

Doxorubicin is an anthracycline antibiotic widely used in cancer therapy. However, its cytotoxic properties affect both cancerous and healthy cells. Combining doxorubicin with antioxidants such as ferulic acid reduces its side effects, while simultaneously enhancing therapeutic effectiveness.

View Article and Find Full Text PDF

: Pentacyclic triterpenoids are increasingly studied as anticancer agents with many advantages compared to synthetic chemotherapeutics. The aim of this study was to prepare liposomal and nanostructured lipid formulations including a standardized extract of silver birch () outer bark (TTs) and to evaluate their potential as anticancer agents in vitro, using Melanoma B16-F10 and Walker carcinoma cells. : Appropriate solvents were selected for efficient TTs extraction, and original recipes were used to obtain Pegylated liposomes and nanolipid complexes with entrapped TTs, comparative to pure standards (betulinic acid and doxorubicin) in similar conditions.

View Article and Find Full Text PDF

Aim: This study aims to compare the efficiencies and toxicities of pegylated liposomal doxorubicin (PLD) based and epirubicin based chemotherapeutic regimens as neoadjuvant chemotherapy (NAC) for early breast cancer.

Patients And Methods: We retrospectively analyzed 391 patients with stage II-III breast cancer who received NAC in multiple centers. The efficiencies and toxicities of PLD and epirubicin based NAC regimens were compared by using both propensity-score matched (PSM) and unmatched data.

View Article and Find Full Text PDF

Targeted Covalent Nanodrugs Reinvigorate Antitumor Immunity and Kill Tumors via Improving Intratumoral Accumulation and Retention of Doxorubicin.

ACS Nano

January 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.

Article Synopsis
  • Researchers have developed targeted covalent nanodrugs that improve the delivery and effectiveness of small-molecule chemotherapeutics, overcoming challenges in drug accumulation in tumors.
  • The nanodrugs utilize near-infrared (NIR) irradiation to activate and bind to specific cancer cell receptors, significantly increasing the accumulation of the drug doxorubicin within tumors compared to standard methods.
  • These advancements lead to enhanced cancer treatment outcomes, boosting the immune response and reducing tumor size while also minimizing side effects compared to traditional treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!