AI Article Synopsis

  • Understanding carbon dioxide utilization is essential for decreasing carbon footprints and producing valuable chemicals, with transition metal pincer complexes serving as efficient catalysts for CO2 hydrogenation to formic acid.
  • There is a need for research to explore the structure-activity relationships of these pincer complexes using computational methods to optimize their catalytic performance.
  • A study focusing on Mn(I)NNN pincer complexes revealed that specific aromatic functionalities significantly influence catalytic efficiency, with certain configurations, like a benzene ring at specific sites, enhancing CO hydrogenation effectiveness, while others, like N,N-dimethyl aniline, result in decreased performance.

Article Abstract

Carbon dioxide utilization is necessary to reduce carbon footprint and also to synthesize value-added chemicals. The transition metal pincer complexes are attractive catalysts for the hydrogenation of carbon dioxide to formic acid. There is a need to understand the factors affecting the catalytic performance of these pincer complexes through a structure-activity relationship study using computational methods. It is a well-established fact that aromatic functionalities offer stability and selectivity to transition metal catalysts. However, their impact on the performance of the catalysts is lesser known in the case of metal pincer complexes. Hence, it is necessary to investigate the catalytic performance of Mn(I)NNN pincer complexes with variably activated aromatic functionalities. In this context, 15 catalysts are designed by placing different types of aromatic rings at the pincer carbons and two terminal nitrogen of Mn(I)NNN pincer complexes. A benzene moiety, placed at C2-C3 carbons of Mn(I)NNN pincer complex with identical aromatic groups at the terminal nitrogen, is found to be most efficient toward CO hydrogenation than the rest of the catalysts. On the other hand, when N,N-dimethyl aniline is placed at C2-C3 carbons of Mn(I)NNN pincer complexes, then the catalytic performance is significantly decreased. Thus, the present study unravels the impact of aromatic groups in Mn(I)NNN pincer complexes toward the catalytic hydrogenation of carbon dioxide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639700PMC
http://dx.doi.org/10.3389/fchem.2021.778718DOI Listing

Publication Analysis

Top Keywords

pincer complexes
32
mninnn pincer
24
carbon dioxide
16
aromatic groups
12
catalytic performance
12
pincer
10
groups mninnn
8
complexes
8
transition metal
8
metal pincer
8

Similar Publications

Herein, we report the isolation of pyridine moiety-functionalized SiNSi pincer-based bis-silylene ligand () and its reactivity toward various halide precursors (X = Br and I) of group 13 elements (M = Al, Ga, and In). This gave us straightforward access to the SiNSi pincer-coordinated group 13 cations (-). These complexes are duly characterized by single-crystal X-ray diffraction studies, multinuclear magnetic resonance spectroscopy (H, C, and Si), and high-resolution mass spectrometry techniques.

View Article and Find Full Text PDF

A pronounced nucleophilicity in combination with a distinct redox non-innocence is a unique feature of a coordinated ligand, which in the current case, leads to unprecedented carbon-centered reactivity patterns: A carbodiphosphorane-based (CDP) pincer-type rhodium complex allows to cleave two C-Cl-bonds of geminal dichlorides via two consecutive SN2-type oxidative additions resulting in the formation of a stabilized carbene fragment. In the presence of a suitable reductant the carbene fragment can even be converted into olefines or hydrodehalogenation products in a catalytic reaction. The developed method can also be used to convert chlorofluorocarbons (CFCs) such as CH2ClF to fluoromethane and methane.

View Article and Find Full Text PDF

Redox-active Co(II) and Zn(II) Pincer Complexes as High-Capacity Anode Materials for Lithium-Ion Batteries.

Adv Sci (Weinh)

December 2024

Department of Chemistry and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju, 52828, South Korea.

To address the ongoing demand for high-performance energy storage devices, it is crucial to identify new electrode materials. Lithium-ion batteries (LIBs) store energy via the electrochemical redox process, so their electrode materials should have reversible redox properties for rechargeability. On that note, redox-active metal complexes are explored as innovative electrode materials for LIBs.

View Article and Find Full Text PDF

We report the proton-coupled electron transfer (PCET) reactivity of an octahedral Ta(V) aniline complex supported by an acridane-derived redox active NNN pincer ligand. The reversible binding of aniline to a Ta(V) dichloride induces significant coordination-induced bond weakening (CIBW) of the aniline N-H bonds. This enables a rare two-fold hydrogen atom abstraction, resulting in a terminal imido complex and a two-electron oxidation of the NNN pincer ligand, all while maintaining the metal's oxidation state.

View Article and Find Full Text PDF

The catalytic efficiency of M-Htpda pincer complexes (M=Mn(I), Fe(II), Co(III)) in CO hydrogenation, emphasizing the role of transition metal variability have been discussed. The DFT analysis demonstrates that complexes with low αR values form weaker M-H bonds, enhancing catalyst reactivity with the elongation of M-H bond. The analysis further displays excellent catalytic performance for Mn-Htpda (ΔE=20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!