AI Article Synopsis

  • The study investigates the relationship between certain cytokines and oxidative stress markers in patients with severe COVID-19, as hyper-production of cytokines and heightened oxidative stress may worsen the disease.
  • Using advanced biochip technology, researchers found that specific cytokines (like IL-6, IL-8, and TNF-α) were significantly elevated in severe cases, and oxidative stress parameters were also higher in these patients.
  • IL-6 showed the strongest correlation with oxidative stress markers, suggesting these measurements could serve as potential indicators in predicting disease progression in COVID-19 patients at an early stage.

Article Abstract

COVID-19 can be worsened by hyper-production of cytokines accompanied by increased level of oxidative stress. The aim of this study was to investigate the correlation between a set of cytokines and the markers of the oxidative stress. The levels of cytokines IL-2, IL-4, IL-6, IL8, IL-10, VEGF, IFN-γ, TNF-α, IL-1α, MCP-1 and EGF were determined by using High Sensitivity Evidence Investigator™ Biochip Array technology. The oxidative stress parameters (d-ROM, PAT, OS index) were measured in serum on FRAS5 analytical photometric system. IL-6, IL-8, IL-10, VEGF, MCP-1 and EGF were significantly higher (p<0.05) in the patients with severe COVID-19 with increased levels of IL-2, IFN-y, TNF-α and IL-1α. The d-ROM, OS index, and PAT were significantly higher (p<0.05) in severe COVID-19 patients. IL-6 demonstrated the strongest correlation with all of the markers of the oxidative stress, d-ROM (r=0.9725, p=0.0001), PAT (r=0.5000, p=0.0001) and OS index (r=0.9593, p=0.012). Similar behavior was evidenced between IFN-y and d-ROM (r=0.4006, p=0.0001), PAT (r=0.6030, p=0.0001) and OS index (r=0.4298, p=0.012). The oxidative stress markers show good correlation with the tested cytokines which can be measured at the beginning of the disease in a primary care setting to predict the course of COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8603313PMC
http://dx.doi.org/10.12688/f1000research.55166.2DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
stress parameters
8
il-10 vegf
8
mcp-1 egf
8
presentation cytokine
4
cytokine profile
4
profile relation
4
oxidative
4
relation oxidative
4
stress
4

Similar Publications

Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment.

View Article and Find Full Text PDF

Despite growing awareness of their importance in soil ecology, the genetic and physiological traits of bacterial predators are still relatively poorly understood. In the course of a predator evolution experiment, we identified a class of genotypes leading to enhanced predation against diverse species. RNA-seq analysis demonstrated that this phenotype is linked to the constitutive activation of a predation-specific program.

View Article and Find Full Text PDF

Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy.

Chem Rev

January 2025

Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China.

Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) , thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects.

View Article and Find Full Text PDF

Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance.

ISME J

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.

View Article and Find Full Text PDF

Metabolomic and proteomic changes in leaves of rubber seedlings infected by Phytophthora palmivora.

Tree Physiol

January 2025

Special Research Incubator Unit of Fermentomics, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.

Phytophthora palmivora, an oomycete pathogen, induces leaf fall disease in rubber trees (Hevea brasiliensis), causing significant economic losses. Effective disease management requires an understanding metabolic dynamics during infection. This study employed untargeted metabolomic and proteomic analyses to investigate the response of rubber seedling leaves to P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!