A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reactive Oxygen Species Are Essential for Vasoconstriction upon Cold Exposure. | LitMetric

Purpose: We explored the role of ROS in cold-induced vasoconstriction and corresponding mechanism.

Methods: Three experiments were performed. First, we measured blood flow in human hands before and after cold exposure. Second, 24 mice were randomly divided into 3 groups: 8 mice received saline injection, 8 received subcutaneous Tempol injection, and 8 received intrathecal Tempol injection. After 30 min, we determined blood flow in the skin before and after cold exposure. Finally, we used Tempol, CCG-1423, and Go 6983 to pretreat HAVSMCs and HUVECs for 24 h. Then, cells in the corresponding groups were exposed to cold (6 h, 4°C). After cold exposure, the cytoskeleton was stained. Intracellular Ca and ROS levels were measured by flow cytometry and fluorescence microscopy. We measured protein expression via Western blotting.

Results: In the first experiment, after cold exposure, maximum skin blood flow decreased to 118.4 ± 50.97 flux units. Then, Tempol or normal saline pretreatment did not change skin blood flow. Unlike intrathecal Tempol injection, subcutaneous Tempol injection increased skin blood flow after cold exposure. Finally, cold exposure for 6 h shrank the cells, making them narrower, and increased intracellular Ca and ROS levels in HUVECs and HAVSMCs. Tempol reduced cell shrinkage and decreased intracellular Ca levels. In addition, Tempol decreased intracellular ROS levels. Cold exposure increased RhoA, Rock1, p-MLC-2, ET-1, iNOS, and p-PKC expression and decreased eNOS expression. Tempol or CCG-1423 pretreatment decreased RhoA, Rock1, and p-MLC-2 levels in HAVSMCs. Furthermore, Tempol or Go 6983 pretreatment decreased ET-1, iNOS, and p-PKC expression and increased eNOS expression in HUVECs.

Conclusion: ROS mediate the vasoconstrictor response within the cold-induced vascular response, and ROS in blood vessel tissues rather than nerve fibers are involved in vasoconstriction via the ROS/RhoA/ROCK1 and ROS/PKC/ET-1 pathways in VSMCs and endothelial cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635890PMC
http://dx.doi.org/10.1155/2021/8578452DOI Listing

Publication Analysis

Top Keywords

cold exposure
32
blood flow
20
tempol injection
16
intracellular ros
12
ros levels
12
skin blood
12
tempol
10
cold
9
exposure
8
injection received
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!