A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of a Novel Ferroptosis-Related Gene Prediction Model for Clinical Prognosis and Immunotherapy of Colorectal Cancer. | LitMetric

Background: Colorectal cancer (CRC) is the third most common malignancies worldwide. Ferroptosis is a programmed, iron-dependent cell death observed in cancer cells. However, the prognostic potential and immunotherapy biomarker potential of ferroptosis-related genes (FRGs) in CRC patients remains to be clarified.

Methods: At first, we comprehensively analysed the different expression and prognosis of related FRGs in CRC patients based on TCGA cohort. The relationship between functional enrichment of these genes and immune microenvironment in CRC was investigated using the TCGA database. Prognostic model was constructed to determine the association between FRGs and the prognosis of CRC. Relative verification was done based on the GEO database. Meanwhile, the ceRNA network of FRGs in the model was also performed to explore the regulatory mechanisms.

Results: Eight differentially expressed FRGs were associated with the prognosis of CRC patients. Patients from the TCGA database were classified into the A, B, and C FRG clusters with different features. And FRG scores were constructed to quantify the FRG pattern of individual patients with colorectal cancer. The CRC patients with higher FRG score showed worse survival outcomes, higher immune dysfunction, and lower response to immunotherapy. The prognostic model showed a high accuracy for predicting the OS of CRC. Finally, a ceRNA network was analysed to show the concrete regulation mechanisms of critical FRGs in CRC.

Conclusions: The FRG risk score prognostic model based on 8 FRGs exhibit superior predictive performance, providing a novel prognostic model with a high accuracy for CRC patients. Moreover, FRG score can be the potential biomarker of the response of immunotherapy for CRC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635899PMC
http://dx.doi.org/10.1155/2021/4846683DOI Listing

Publication Analysis

Top Keywords

crc patients
20
prognostic model
16
colorectal cancer
12
crc
10
cancer crc
8
frgs crc
8
tcga database
8
prognosis crc
8
cerna network
8
frg score
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!