A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application Analysis of Radial Basis Function Neural Network Algorithm of Genetic Algorithm for Environmental Restoration and Treatment Effect Evaluation of Decommissioned Uranium Tailings Ponds. | LitMetric

A new analysis method for the environmental stability of uranium tailing ponds is established in this paper, and the stability intervals and environmental stability rates of indicators are defined in precise mathematical language and analyzed with examples. The results show that the overall environmental stability of this uranium tailings pond is still in a poor state after the first phase of decommissioning treatment, and special decommissioning treatment should be carried out for factors such as pH and radionuclides Po and Pb. Using the powerful nonlinear mapping function of the artificial neural network, a radial basis function neural network algorithm was constructed to predict the environmental stability of the uranium tailing pond. It provides a new feasible method for the comprehensive evaluation technology of uranium tailings ponds. . The research work in this paper mainly analyzed the environmental stabilization process and stability of decommissioned uranium tailings ponds, proposed a new concept of environmental stability with ecological and environmental protection concepts and gave it a new connotation, established an environmental stability evaluation index system for decommissioned uranium tailings ponds through index screening by using rough set theory, comprehensively considered the influence of environmental factors such as external wastewater and exhaust gas, and realized the multifactor. The system of evaluation indexes for the stability of decommissioned uranium tailings ponds was established by combining multiple factors, and the long-term monitoring and modeling of the environmental stabilization process of decommissioned uranium tailings ponds was carried out by using mathematical methods. The results show that the RBFNN-GA algorithm can reduce the training error of the random radial basis function neural network, improve the generalization ability of the network, and make it capable of handling large data sets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635904PMC
http://dx.doi.org/10.1155/2021/1650096DOI Listing

Publication Analysis

Top Keywords

uranium tailings
28
tailings ponds
24
environmental stability
24
decommissioned uranium
20
neural network
16
radial basis
12
basis function
12
function neural
12
stability uranium
12
environmental
11

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!