Tissue Engineering Strategies for Peripheral Nerve Regeneration.

Front Neurol

Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Published: November 2021

A peripheral nerve injury (PNI) has severe and profound effects on the life of a patient. The therapeutic approach remains one of the most challenging clinical problems. In recent years, many constructive nerve regeneration schemes are proposed at home and abroad. Nerve tissue engineering plays an important role. It develops an ideal nerve substitute called artificial nerve. Given the complexity of nerve regeneration, this review summarizes the pathophysiology and tissue-engineered repairing strategies of the PNI. Moreover, we discussed the scaffolds and seed cells for neural tissue engineering. Furthermore, we have emphasized the role of 3D printing in tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8635143PMC
http://dx.doi.org/10.3389/fneur.2021.768267DOI Listing

Publication Analysis

Top Keywords

tissue engineering
16
nerve regeneration
12
peripheral nerve
8
nerve
7
tissue
4
engineering strategies
4
strategies peripheral
4
regeneration peripheral
4
nerve injury
4
injury pni
4

Similar Publications

Heart-on-a-chip (HoC) devices have emerged as a powerful tool for studying the human heart's intricate functions and dysfunctions in vitro. Traditional preclinical models, such as 2D cell cultures model and animal model, have limitations in accurately predicting human response to cardiovascular diseases and treatments. The HoC approach addresses these shortcomings by recapitulating the microscale anatomy, physiology, and biomechanics of the heart, thereby providing a more clinically relevant platform for drug testing, disease modeling, and personalized therapy.

View Article and Find Full Text PDF

Humboldt squid (Dosidicus gigas) is the most abundant cephalopod in the fishing industry, and its high nutritional and organoleptic properties make it a go-to food product for consumers. Therefore, developing new processing techniques seems imperative to minimize quality deterioration and provide products with appropriate characteristics. The study aimed to determine the effect of high-pressure impregnation (HPI) pretreatment on hot air-drying kinetics and the quality of Humboldt squid slices.

View Article and Find Full Text PDF

Milk-derived extracellular vesicles and gut health.

NPJ Sci Food

January 2025

Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia.

Milk is a nutrient-rich liquid produced by mammals, offering various health benefits due to its composition of proteins, fats, carbohydrates, vitamins, and minerals. Beyond traditional nutritional aspects, recent research has focused on extracellular vesicles (EVs) found in milk and their potential health benefits, especially for gastrointestinal (GI) health. Milk-derived EVs have been shown to influence gut microbiota, promote gut barrier integrity, support tissue repair and regeneration, modulate immune responses, and potentially aid in managing conditions like inflammatory bowel disease (IBD) and colorectal cancer.

View Article and Find Full Text PDF

Adenoid hypertrophy, characterized by the abnormal enlargement of adenoid tissue, is a condition that can cause significant breathing and sleep disturbances, particularly in children. Accurate diagnosis of adenoid hypertrophy is critical, yet traditional methods, such as imaging and manual interpretation, are prone to errors. This study uses an ensemble deep learning-based approach for adenoid classification.

View Article and Find Full Text PDF

Emerging Microfluidic Building Blocks for Cultured Meat Construction.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.

Cultured meat aims to produce meat mass by culturing cells and tissues based on the muscle regeneration mechanism, and is considered an alternative to raising and slaughtering livestock. Hydrogel building blocks are commonly used as substrates for cell culture in tissue engineering and cultured meat because of their high water content, biocompatibility, and similar three-dimensional (3D) environment to the cellular niche . With the characteristics of precise manipulation of fluids, microfluidics exhibits advantages in the fabrication of building blocks with different structures and components, which have been widely applied in tissue regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!