Frail older adults have an increased risk of adverse health outcomes and premature death. They also exhibit altered gait characteristics in comparison with healthy individuals. In this study, we created a Fried's frailty phenotype (FFP) labelled casual walking video set of older adults based on the West China Health and Aging Trend study. A series of hyperparameters in machine vision models were evaluated for body key point extraction (AlphaPose), silhouette segmentation (Pose2Seg, DPose2Seg, and Mask R-CNN), gait feature extraction (Gaitset, LGaitset, and DGaitset), and feature classification (AlexNet and VGG16), and were highly optimised during analysis of gait sequences of the current dataset. The area under the curve (AUC) of the receiver operating characteristic (ROC) at the physical frailty state identification task for AlexNet was 0.851 (0.827-0.8747) and 0.901 (0.878-0.920) in macro and micro, respectively, and was 0.855 (0.834-0.877) and 0.905 (0.886-0.925) for VGG16 in macro and micro, respectively. Furthermore, this study presents the machine vision method equipped with better predictive performance globally than age and grip strength, as well as than 4-m-walking-time in healthy and pre-frailty classifying. The gait analysis method in this article is unreported and provides promising original tool for frailty and pre-frailty screening with the characteristics of convenience, objectivity, rapidity, and non-contact. These methods can be extended to any gait-related disease identification processes, as well as in-home health monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8637841 | PMC |
http://dx.doi.org/10.3389/fnagi.2021.757823 | DOI Listing |
Sci Rep
December 2024
Neurology, Icahn School of Medicine at Mount Sinai, New York, USA.
We used machine learning to investigate the residual visual field (VF) deficits and macula retinal ganglion cell (RGC) thickness loss patterns in recovered optic neuritis (ON). We applied archetypal analysis (AA) to 377 same-day pairings of 10-2 VF and optical coherence tomography (OCT) macula images from 93 ON eyes and 70 normal fellow eyes ≥ 90 days after acute ON. We correlated archetype (AT) weights (total weight = 100%) of VFs and total retinal thickness (TRT), inner retinal thickness (IRT), and macular ganglion cell-inner plexiform layer (GCIPL) thickness.
View Article and Find Full Text PDFVet Sci
December 2024
Department of Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
Canine hip dysplasia (CHD) screening relies on accurate positioning in the ventrodorsal hip extended (VDHE) view, as even mild pelvic rotation can affect CHD scoring and impact breeding decisions. This study aimed to assess the association between pelvic rotation and asymmetry in obturator foramina areas (AOFAs) and to develop a computer vision model for automated AOFA measurement. In the first part, 203 radiographs were analyzed to examine the relationship between pelvic rotation, assessed through asymmetry in iliac wing and obturator foramina widths (AOFWs), and AOFAs.
View Article and Find Full Text PDFTomography
December 2024
Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
This research introduces BAE-ViT, a specialized vision transformer model developed for bone age estimation (BAE). This model is designed to efficiently merge image and sex data, a capability not present in traditional convolutional neural networks (CNNs). BAE-ViT employs a novel data fusion method to facilitate detailed interactions between visual and non-visual data by tokenizing non-visual information and concatenating all tokens (visual or non-visual) as the input to the model.
View Article and Find Full Text PDFJ Imaging
December 2024
Laboratoire Imagerie et Vision Artificielle (ImVia), Université de Bourgogne, 21000 Dijon, France.
Determining the maturity of cocoa pods early is not just about guaranteeing harvest quality and optimizing yield. It is also about efficient resource management. Rapid identification of the stage of maturity helps avoid losses linked to a premature or late harvest, improving productivity.
View Article and Find Full Text PDFJ Imaging
December 2024
Department of Mechatronics Engineering, Universidad Católica Boliviana "San Pablo", La Paz 4807, Bolivia.
Computer vision-based gait recognition (CVGR) is a technology that has gained considerable attention in recent years due to its non-invasive, unobtrusive, and difficult-to-conceal nature. Beyond its applications in biometrics, CVGR holds significant potential for healthcare and human-computer interaction. Current CVGR systems often transmit collected data to a cloud server for machine learning-based gait pattern recognition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!