In neuroscience research, data are quite often characterized by an imbalanced distribution between the majority and minority classes, an issue that can limit or even worsen the prediction performance of machine learning methods. Different resampling procedures have been developed to face this problem and a lot of work has been done in comparing their effectiveness in different scenarios. Notably, the robustness of such techniques has been tested among a wide variety of different datasets, without considering the performance of each specific dataset. In this study, we compare the performances of different resampling procedures for the imbalanced domain in stereo-electroencephalography (SEEG) recordings of the patients with focal epilepsies who underwent surgery. We considered data obtained by network analysis of interictal SEEG recorded from 10 patients with drug-resistant focal epilepsies, for a supervised classification problem aimed at distinguishing between the epileptogenic and non-epileptogenic brain regions in interictal conditions. We investigated the effectiveness of five oversampling and five undersampling procedures, using 10 different machine learning classifiers. Moreover, six specific ensemble methods for the imbalanced domain were also tested. To compare the performances, Area under the ROC curve (AUC), F-measure, Geometric Mean, and Balanced Accuracy were considered. Both the resampling procedures showed improved performances with respect to the original dataset. The oversampling procedure was found to be more sensitive to the type of classification method employed, with Adaptive Synthetic Sampling (ADASYN) exhibiting the best performances. All the undersampling approaches were more robust than the oversampling among the different classifiers, with Random Undersampling (RUS) exhibiting the best performance despite being the simplest and most basic classification method. The application of machine learning techniques that take into consideration the balance of features by resampling is beneficial and leads to more accurate localization of the epileptogenic zone from interictal periods. In addition, our results highlight the importance of the type of classification method that must be used together with the resampling to maximize the benefit to the outcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641296 | PMC |
http://dx.doi.org/10.3389/fninf.2021.715421 | DOI Listing |
Acad Radiol
January 2025
Department of Radiology and Intervention, Hospital Pakar Kanak-Kanak (UKM Specialist Children's Hospital), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia (Y.L., F.Y.L., J.N.C., H.A.H., H.A.M.); Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of Radiology, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia (H.A.M.). Electronic address:
Rationale And Objectives: Extrathyroidal extension (ETE) and BRAF mutation in papillary thyroid cancer (PTC) increase mortality and recurrence risk. Preoperative identification presents considerable challenges. Although radiomics has emerged as a potential tool for identifying ETE and BRAF mutation, systematic evidence supporting its effectiveness remains insufficient.
View Article and Find Full Text PDFJ Pediatr (Rio J)
January 2025
Department of General Surgery and Neonatal Surgery, Liangjiang Wing, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China. Electronic address:
Objective: This study aimed to develop a predictive model using a random forest algorithm to determine the likelihood of postoperative adhesive small bowel obstruction (ASBO) in infants under 3 months with intestinal malrotation.
Methods: A machine learning model was used to predict postoperative adhesive small bowel obstruction using comprehensive clinical data extracted from 107 patients with a follow-up of at least 24 months. The Boruta algorithm was used for selecting clinical features, and nested cross-validation tuned and selected hyper-parameters for the random forest model.
Comput Biol Chem
January 2025
College of Artificial Intelligence, Tianjin University of Science and Technology, No. 9, 13th Street, Tianjin Economic-Technological Development Area, Tianjin, 300457, China. Electronic address:
The enzyme turnover number (k) is crucial for understanding enzyme kinetics and optimizing biotechnological processes. However, experimentally measured k values are limited due to the high cost and labor intensity of wet-lab measurements, necessitating robust computational methods. To address this issue, we propose PreTKcat, a framework that integrates pre-trained representation learning and machine learning to predict k values.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Biological and Agricultural Engineering, University of Arkansas, United States of America. Electronic address:
The increasing global demand for meat and dairy products, fueled by rapid industrialization, has led to the expansion of Animal Feeding Operations (AFOs) in the United States (US). These operations, often found in clusters, generate large amounts of manure, posing a considerable risk to water quality due to the concentrated waste streams they produce. Accurately mapping AFOs is essential for effective environmental and disease management, yet many facilities remain undocumented due to variations in federal and state regulations.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou 510030, China.
The long-term presence of antibiotics in the aquatic environment will affect ecology and human health. Techniques for determining antibiotics are often time-consuming, labor-intensive and costly, and it is desirable to seek new methods to achieve rapid prediction of antibiotics. Many scholars have shown the effectiveness of machine learning in water quality prediction, however, its effectiveness in predicting antibiotic concentrations in the aquatic environment remains inconclusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!