Neuropeptide Y (NPY) is a neurotransmitter that has been implicated in the development of anxiety and mood disorders. Low levels of NPY have been associated with risk for these disorders, and high levels with resilience. Anxiety and depression are associated with altered intrinsic functional connectivity of brain networks, but the effect of NPY on functional connectivity is not known. Here, we test the hypothesis that individual differences in NPY expression affect resting functional connectivity of the default mode and salience networks. We evaluated static connectivity using graph theoretical techniques and dynamic connectivity with Leading Eigenvector Dynamics Analysis (LEiDA). To increase our power of detecting NPY effects, we genotyped 221 individuals and identified 29 healthy subjects at the extremes of genetically predicted NPY expression (12 high, 17 low). Static connectivity analysis revealed that lower levels of NPY were associated with shorter path lengths, higher global efficiency, higher clustering, higher small-worldness, and average higher node strength within the salience network, whereas subjects with high NPY expression displayed higher modularity and node eccentricity within the salience network. Dynamic connectivity analysis showed that the salience network of low-NPY subjects spent more time in a highly coordinated state relative to high-NPY subjects, and the salience network of high-NPY subjects switched between states more frequently. No group differences were found for static or dynamic connectivity of the default mode network. These findings suggest that genetically driven individual differences in NPY expression influence risk of mood and anxiety disorders by altering the intrinsic functional connectivity of the salience network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636673PMC
http://dx.doi.org/10.3389/fnsys.2021.629488DOI Listing

Publication Analysis

Top Keywords

salience network
24
functional connectivity
20
npy expression
16
dynamic connectivity
12
connectivity
10
npy
9
associated altered
8
static dynamic
8
connectivity salience
8
levels npy
8

Similar Publications

Functional resting state connectivity is differentially associated with IL-6 and TNF-α in depression and in healthy controls.

Sci Rep

January 2025

Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.

Inflammatory processes have been implicated in the pathophysiology of depression. In human studies, inflammation has been shown to act as a critical disease modifier, promoting susceptibility to depression and modulating specific endophenotypes of depression. However, there is scant documentation of how inflammatory processes are associated with neural activity in patients with depression.

View Article and Find Full Text PDF

Rad4XCNN: A new agnostic method for post-hoc global explanation of CNN-derived features by means of Radiomics.

Comput Methods Programs Biomed

January 2025

Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, 90127, Italy. Electronic address:

Article Synopsis
  • Machine learning-based clinical decision support systems (CDSS) face challenges with transparency and reliability, as explainability often reduces predictive accuracy.
  • A novel method called Rad4XCNN enhances the predictive power of CNN features while maintaining interpretability through Radiomics, moving beyond traditional saliency maps.
  • In breast cancer classification tasks, Rad4XCNN demonstrates superior accuracy compared to other feature types and allows for global insights, effectively addressing the explainability-accuracy trade-off in AI models.
View Article and Find Full Text PDF

Background: Gastrointestinal (GI) diseases pose significant challenges for healthcare systems, largely due to the complexities involved in their detection and treatment. Despite the advancements in deep neural networks, their high computational demands hinder their practical use in clinical environments.

Objective: This study aims to address the computational inefficiencies of deep neural networks by proposing a lightweight model that integrates model compression techniques, ConvLSTM layers, and ConvNext Blocks, all optimized through Knowledge Distillation (KD).

View Article and Find Full Text PDF

Sex differences in resting-state fMRI functional connectivity related to humor styles.

Biol Psychol

January 2025

De(p)artment of Educational Psychology and Counseling, National Taiwan Normal University, Taipei 10610, Taiwan; Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei 10610, Taiwan; Chinese Language and Technology Center, National Taiwan Normal University, Taipei 10610, Taiwan; Social Emotional Education and Development Center, National Taiwan Normal University, Taipei 10610, Taiwan. Electronic address:

Research on how functional connectivity (FC) during resting-state relates to humor styles and sex is limited. This study aimed to address this knowledge gap by analyzing resting-state fMRI data from 56 healthy participants and measuring FC. In addition, participants completed the Humor Styles Questionnaire.

View Article and Find Full Text PDF

This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!