A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling and Control of COVID-19 Transmission from a Perspective of Polymerization Reaction Dynamics. | LitMetric

Modeling and Control of COVID-19 Transmission from a Perspective of Polymerization Reaction Dynamics.

Ind Eng Chem Res

State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

Published: December 2021

Due to the serious economic losses and deaths caused by COVID-19, the modeling and control of such a pandemic has become a hot research topic. This paper finds an analogy between a polymerization reaction and COVID-19 transmission dynamics, which will provide a novel perspective to optimal control measures. Susceptible individuals, exposed people, infected cases, recovered population, and the dead can be assumed to be specific molecules in the polymerization system. In this paper, a hypothetical polymerization reactor is constructed to describe the transmission of an epidemic, and its kinetic parameters are regressed by the least-squares method. The intensity of social distancing is considered to the mixing degree of the reaction system, and contact tracing and isolation ρ can be regarded as an external circulation in the main reactor to reduce the concentration of active species. Through these analogies, this model can predict the peak infection, deaths, and end time of the epidemic under different control measures to support the decision-making process. Without any measures ( = 1.0 and ρ = 0), more than 90% of the population would be infected. It takes several years to complete herd immunity by nonpharmacological intervention when the proportion of deaths is limited to less than 5%. However, vaccination can reduce the time to tens to hundreds of days, which is related to the maximum number of vaccines per day.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.iecr.1c03647DOI Listing

Publication Analysis

Top Keywords

modeling control
8
covid-19 transmission
8
polymerization reaction
8
control measures
8
control covid-19
4
transmission perspective
4
polymerization
4
perspective polymerization
4
reaction dynamics
4
dynamics serious
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!