Recent discoveries of exotic physical phenomena, such as unconventional superconductivity in magic-angle twisted bilayer graphene, dissipationless Dirac fermions in topological insulators, and quantum spin liquids, have triggered tremendous interest in quantum materials. The macroscopic revelation of quantum mechanical effects in quantum materials is associated with strong electron-electron correlations in the lattice, particularly where materials have reduced dimensionality. Owing to the strong correlations and confined geometry, altering atomic spacing and crystal symmetry via strain has emerged as an effective and versatile pathway for perturbing the subtle equilibrium of quantum states. This review highlights recent advances in strain-tunable quantum phenomena and functionalities, with particular focus on low-dimensional quantum materials. Experimental strategies for strain engineering are first discussed in terms of heterogeneity and elastic reconfigurability of strain distribution. The nontrivial quantum properties of several strain-quantum coupled platforms, including 2D van der Waals materials and heterostructures, topological insulators, superconducting oxides, and metal halide perovskites, are next outlined, with current challenges and future opportunities in quantum straintronics followed. Overall, strain engineering of quantum phenomena and functionalities is a rich field for fundamental research of many-body interactions and holds substantial promise for next-generation electronics capable of ultrafast, dissipationless, and secure information processing and communications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202107362DOI Listing

Publication Analysis

Top Keywords

strain engineering
12
quantum phenomena
12
phenomena functionalities
12
quantum materials
12
quantum
11
topological insulators
8
materials
6
strain
5
engineering low-dimensional
4
low-dimensional materials
4

Similar Publications

In the last decade, the emergence of variant strains of avian orthoreovirus (ARV) has caused an enormous economic impact on the poultry industry across China and other countries. This study aimed to evaluate the molecular evolution of the ARV lineages detected in Chinese commercial broiler farms. Firstly, ARV isolation and identification of commercial broiler arthritis cases from different provinces in China from 2016 to 2021 were conducted.

View Article and Find Full Text PDF

Expanding the evidence for cross-species viral transmission from trophic interactions of parasitoid wasps and their hosts.

Braz J Microbiol

January 2025

Virus Bioinformatics Laboratory, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus, 45662-900, BA, Brazil.

Parasitoid wasps act as natural biological control agents for several harmful insect species. However, there is a lack of information regarding the exogenous RNA viruses that infect parasitoids and may contribute to the success of their parasitism strategies. This study aimed to investigate the presence, abundance, and replication of known exogenous viruses in two parasitoid wasp species and their corresponding preys.

View Article and Find Full Text PDF

The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-AlO and perovskite SrTiO constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO/SrTiO heterostructure.

View Article and Find Full Text PDF

Unlabelled: Archaeal molecular biology has been a topic of intense research in recent decades as their role in global ecosystems, nutrient cycles, and eukaryotic evolution comes to light. The hypersaline-adapted archaeal species and serve as important model organisms for understanding archaeal genomics, genetics, and biochemistry, in part because efficient tools enable genetic manipulation. As a result, the number of strains in circulation among the haloarchaeal research community has increased in recent decades.

View Article and Find Full Text PDF

High-performance lightweight materials are urgently needed because of energy savings and emission reduction. Here, we design a new steel with a low density of 6.41 g/cm, which is a 20% weight reduction compared to the conventional steel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!